EXAM IN OPTIMAL CONTROL

ROOM: U14
TIME: April 24, 2019, 14-18
COURSE: TSRT08, Optimal Control
PROVKOD: TEN1
DEPARTMENT: ISY
NUMBER OF EXERCISES: 4
NUMBER OF PAGES (including cover pages): 4
RESPONSIBLE TEACHER: Anders Hansson, phone 070-3004401
VISITS: 15:30, 17:00
COURSE ADMINISTRATOR: Ninna Stensgård, phone: 013-284725, ninna.stensgard@liu.se

APPROVED TOOLS: Formula sheet for the course, printed collections of formulas and tables, calculator.

SOLUTIONS: Linked from the course home page after the examination.
The exam can be inspected and checked out 2019-05-16 at 12.30-13.00 in room 2A:473, B-building, entrance 27, A-corridore to the left.

PRELIMINARY GRADING: betyg 315 points
betyg 423 points
betyg 530 points
All solutions should be well motivated.

Good Luck!

1. (a) Find the control signal $u(t)$ which satisfies the optimal control problem

$$
\begin{array}{ll}
\underset{u(\cdot)}{\operatorname{minimize}} & \int_{0}^{T}\left(x_{2}(t)+u^{2}(t)\right) d t \\
\text { subject to } & \dot{x}_{1}(t)=-x_{1}(t)+u(t) \\
& \dot{x}_{2}(t)=x_{1}(t) \\
& x_{1}(0)=a, x_{2}(0)=0 \tag{5p}
\end{array}
$$

for a fixed $T>0$, using the PMP.
(b) Find the extremal to the functional

$$
\begin{equation*}
J(y)=\int_{0}^{1}\left(y^{2}(t)+4 \dot{y}^{2}(t)\right) d t \tag{5p}
\end{equation*}
$$

satisfying $y(0)=1$ and $y(1)=0$.
2. Consider the problem

$$
\begin{array}{ll}
\underset{u(\cdot)}{\operatorname{minimize}} & \frac{1}{2}(x(T))^{2} \\
\text { subject to } & \dot{x}(t)=u(t), \\
& x(0)=x_{0} \text { given, } \\
& u(t) \in[-1,1], \text { for all } t \in \mathbb{R} .
\end{array}
$$

(a) Show by the use of PMP that the optimal controller is given by

$$
\begin{equation*}
\mu^{*}(t, x)=-\operatorname{sign}(x) \tag{4p}
\end{equation*}
$$

(b) Show that the cost-to-go function $V(t, x)$ that corresponds to the PMP solution above is given by

$$
\begin{equation*}
V(t, x)=J^{*}(t, x)=\frac{1}{2}(\max \{0,|x|-(T-t)\})^{2} \tag{3p}
\end{equation*}
$$

(c) Show that the cost-to-go function above satisfies the HJBE:

$$
\begin{equation*}
-\frac{\partial V}{\partial t}(t, x)=\min _{|u| \leq 1}\left\{f_{0}(t, x, u)+\frac{\partial V}{\partial x}(t, x)^{T} f(t, x, u)\right\}, \quad V(T, x)=\phi(x) \tag{3p}
\end{equation*}
$$

for all (t, x).
3. Assume that we have a vessel whose maximum weight capacity is z and whose cargo is to consist of different quantities of N different items. Let v_{k} denote the value of the k th type of item, and let w_{k} denote the weight of the k th type of item.
(a) Let x_{k} be the used weight capacity of the vessel after the first $k-1$ items have been loaded and let the control u_{k} be the quantity of item k to be loaded on the vessel. Formulate the dynamic equation

$$
\begin{equation*}
x_{k+1}=f\left(k, x_{k}, u_{k}\right), \tag{3p}
\end{equation*}
$$

describing the process.
(b) Determine the constraint set $U\left(k, x_{k}\right)$ on the control signal u_{k}.
(c) Formulate a DP recursion that solves the problem of finding the most valuable cargo satisfying the maximal weight capacity. Observe that you do not need to solve the problem.
4. Consider the following problem

$$
\begin{array}{cl}
\underset{u(\cdot)}{\operatorname{maximize}} & \int_{0}^{T} e^{-\beta t} \sqrt{u(t)} d t \\
\text { subject to } & \dot{x}(t)=\alpha x(t)-u(t), \\
& x(0)=x_{0}>0 \\
& x(t) \geq 0, \text { for all } t \in \mathbb{R} .
\end{array}
$$

Determine a positive function $\gamma(t)$ such that the value function

$$
V(t, x) \triangleq-e^{-\beta t} \sqrt{\gamma(t) x}
$$

satisfies the finite horizon HJBE:

$$
-\frac{\partial V}{\partial t}(t, x)=\min _{u}\left\{f_{0}(t, x, u)+\frac{\partial V}{\partial x}(t, x)^{T} f(t, x, u)\right\}, \quad V(T, x)=\phi(x)
$$

for all (t, x), via the following steps:
(a) Show by minimizing the right hand side of the HJBE with respect to u that $\mu(t, x)=x / \gamma(t)$ is an optimal control candidate.
(b) Determine $\gamma(t)$ so that $\mu(t, x)$ above satisfies the HJBE.

TSRT08: Optimal Control
 Solutions

20190424

1. (a) The Hamiltonian is given by

$$
H(t, x, u, \lambda)=x_{2}+u^{2}+\lambda_{1}\left(-x_{1}+u\right)+\lambda_{2} x_{1} .
$$

Pointwise minimization is obtained via

$$
0=\frac{\partial H}{\partial u}(t, x, u, \lambda)=2 u+\lambda_{1} \quad \Rightarrow \quad u^{*}=-\frac{1}{2} \lambda_{1},
$$

since H is strictly convex in u. The adjoint equations are given by

$$
\begin{aligned}
& \dot{\lambda}_{1}(t)=-\frac{\partial H}{\partial x_{1}}\left(t, x(t), \mu^{*}(t, x(t), \lambda(t)), \lambda(t)\right)=\lambda_{1}(t)-\lambda_{2}(t), \\
& \dot{\lambda}_{2}(t)=-\frac{\partial H}{\partial x_{2}}\left(t, x(t), \mu^{*}(t, x(t), \lambda(t)), \lambda(t)\right)=-1
\end{aligned}
$$

with boundary conditions

$$
\lambda(T)=\frac{\partial \phi}{\partial x}(T, x(T)) \quad \Longleftrightarrow \quad \lambda_{1}(T)=\lambda_{2}(T)=0
$$

Thus, we get $\lambda_{2}(t)=T-t$ and

$$
\dot{\lambda}_{1}(t)=\lambda_{1}(t)+t-T, \quad \lambda_{1}(T)=0,
$$

which has the solution

$$
\lambda_{1}(t)=-(t-T)-1+e^{t-T}
$$

and the optimal control is

$$
u^{*}(t)=-\frac{1}{2} \lambda_{1}(t)=\frac{1}{2}\left(1+t-T-e^{t-T}\right) .
$$

(b) Introducing $x=y$ and $u=\dot{y}$, it holds that $\dot{x}=u$ and the Hamiltonian is given by

$$
H(t, x, u, \lambda)=x^{2}+4 u^{2}+\lambda u
$$

The following equations must hold

$$
\begin{aligned}
\dot{\lambda} & =-\frac{\partial H}{\partial x}(t, x, u, \lambda)=-2 x \\
0 & =\frac{\partial H}{\partial u}(t, x, u, \lambda)=8 u+\lambda
\end{aligned}
$$

The latter yields $\dot{\lambda}=-8 \dot{u}=-8 \ddot{y}$, which substituted into the first equation gives

$$
-8 \ddot{y}=-2 x=-2 y \quad \Leftrightarrow \quad \ddot{y}-\frac{1}{4} y=0
$$

which has the solution

$$
y(t)=c_{1} e^{t / 2}+c_{2} e^{-t / 2},
$$

for some constants c_{1} and c_{2}. The boundary constraints $y(0)=1$ and $y(1)=0$ yields

$$
\left(\begin{array}{cc}
1 & 1 \\
e^{1 / 2} & e^{-1 / 2}
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{1}{0}
$$

which has the solution

$$
\binom{c_{1}}{c_{2}}=\frac{1}{e-1}\binom{-1}{e} .
$$

Thus,

$$
y(t)=\frac{1}{e-1}\left(-e^{t / 2}+e^{1-t / 2}\right)
$$

is the sought after extremal.
2. (a) The Hamiltonian is given by

$$
H(t, x, u, \lambda)=\lambda u
$$

Pointwise minimization yields

$$
\mu(t, x)=\underset{|u| \leq 1}{\arg \min } \lambda u=\left\{\begin{array}{ll}
1, & \lambda<0 \\
-1, & \lambda>0 \\
\tilde{u}, & \lambda=0
\end{array}=-\operatorname{sign}(\lambda),\right.
$$

where $\tilde{u} \in[-1,1]$ is arbitrary. The adjoint equation is given by

$$
\dot{\lambda}(t)=-\frac{\partial H}{\partial x}(t, x, u, \lambda)=0, \quad \lambda(T)=\frac{\partial \phi}{\partial x}(x(T))=x(T)
$$

which has the solution $\lambda(t)=x(T)$. We now have to cases:

- $x(T) \neq 0$: In this case $\lambda(t) \neq 0$ for all t and we can write

$$
\mu(t, x)=-\operatorname{sign}(\lambda)=-\operatorname{sign} x(T)=-\operatorname{sign} x
$$

The last equality holds since x will have the same sign as $x(T)$ during the whole state trajectory.

- $x(T)=0$: In this case $\lambda=0$ for all t and we may use any control signal $\tilde{u} \in[-1,1]$, which obeys the constraint $x(T)=0$. One such control signal is

$$
\mu(t, x)=-\operatorname{sign} x
$$

since this will drive x to zero and stay there.
Consequently, one optimal control is

$$
\mu^{*}(t, x)=-\operatorname{sign}(x) .
$$

(b) Since $J^{*}(t, x)=\frac{1}{2}\left(x^{*}(T)\right)^{2}$, we need to find $x^{*}(T)$. It holds that

$$
x(T)-x(t)=\int_{t}^{T} \dot{x}(\tau) d \tau=\int_{t}^{T} u(\tau) d \tau
$$

which can be written as

$$
\begin{equation*}
x(T)=x(t)-\int_{t}^{T} \operatorname{sign}\{x(\tau)\} d \tau \tag{1}
\end{equation*}
$$

There are two cases:

- $x(t)>0$: In this case the controller will decrease $x(t)$ until, if possible, $x(T)=0$. Thus, it holds that

$$
\begin{aligned}
x(T) & =\max \{0, \overbrace{x(t)-(T-t)}^{\text {from (1) }}\} \\
& =\max \{0,|x(t)|-(T-t)\} .
\end{aligned}
$$

- $x(t)<0$: In this case the controller will increase $x(t)$ until, if possible, $x(T)=0$. Thus, it holds that

$$
\begin{aligned}
x(T) & =\min \{0, \overbrace{x(t)+(T-t)}^{\text {from (1) }}\}=-\max \{0,-x(t)-(T-t)\} \\
& =-\max \{0,|x(t)|-(T-t)\}
\end{aligned}
$$

Thus, the only difference between the two cases are the sign in front of the max and the optimal cost-to-go function becomes

$$
V(t, x)=J^{*}(t, x)=\frac{1}{2}\left(x^{*}(T)\right)^{2}=\frac{1}{2}(\max \{0,|x|-(T-t)\})^{2} .
$$

(c) The function $V(t, x)$ is differentiable and it holds that

$$
\begin{aligned}
& \frac{\partial V}{\partial t}(t, x)=\max \{0,|x|-(T-t)\} \\
& \frac{\partial V}{\partial x}(t, x)=\operatorname{sign}(x) \cdot \max \{0,|x|-(T-t)\}
\end{aligned}
$$

Substituting the above into the HJBE yields

$$
-\max \{0,|x|-(T-t)\}=\min _{|u| \leq 1}\{\operatorname{sign}(x) \cdot u\} \max \{0,|x|-(T-t)\},
$$

which can be seen to hold as an identity for all (t, x).
3. (a) With $x_{1}=0$, the dynamic equation may be written as

$$
x_{k+1}=x_{k}+w_{k} u_{k} .
$$

(b) Since for each item k, we must have $x_{k} \leq z$ for all k and especially

$$
x_{k+1}=x_{k}+w_{k} u_{k} \leq z \quad \Longleftrightarrow \quad u_{k} \leq\left(z-x_{k}\right) / w_{k} .
$$

Furthermore, it is only possible to ship integer quantities which implies that $u \in\{0,1,2, \ldots\}$.
(c) The reward function is given by $f_{0}\left(k, x_{k}, u_{k}\right)=v_{k} u_{k}$, which yields the DP algorithm

$$
\begin{aligned}
J(N+1, x) & =0 \\
J(n, x) & =\max _{\substack{0 \leq u_{n} \leq\left(z-x_{n}\right) / w_{n} \\
u_{n} \in\{0,1,2, \ldots\}}}\left\{v_{n} u_{n}+J\left(n+1, x_{n}+w_{n} u_{n}\right)\right\}, \quad n=N, N-1, \ldots, 1 .
\end{aligned}
$$

4. It holds that

$$
\begin{aligned}
\frac{\partial V}{\partial t}(t, x) & =\beta e^{-\beta t} \sqrt{\gamma(t) x}-\frac{1}{2} \frac{\dot{\gamma}(t) x}{\sqrt{\gamma(t) x}} e^{-\beta t}=\frac{x e^{-\beta t}}{2 \sqrt{\gamma(t) x}}(2 \beta \gamma(t)-\dot{\gamma}(t)) \\
\frac{\partial V}{\partial x}(t, x) & =\frac{1}{2} \frac{\gamma(t)}{\sqrt{\gamma(t) x}} e^{-\beta t} .
\end{aligned}
$$

Thus,

$$
H(t, x, u, \lambda)=f_{0}(t, x, u)+\frac{\partial V}{\partial x}(t, x)^{T} f(t, x, u)=-e^{-\beta t} \sqrt{u}+\frac{1}{2} \frac{\gamma(t)}{\sqrt{\gamma(t) x}} e^{-\beta t}(\alpha x-u),
$$

which has an extremum at

$$
\frac{\partial H}{\partial u}(t, x, u, \lambda)=\frac{e^{-\beta t}}{2}\left(-\frac{1}{\sqrt{u}}+\frac{\gamma(t)}{\sqrt{\gamma(t) x}}\right)=0 \quad \Longrightarrow \quad \mu^{*}(t, x)=\frac{x}{\gamma(t)} .
$$

Since

$$
\frac{\partial^{2} H}{\partial u^{2}}\left(t, x, \mu^{*}(t, x), \lambda\right)=\frac{e^{-\beta t}}{4(x / \gamma(t))^{3 / 2}}>0,
$$

it also constitutes a minimum. The Hamiltonian is then given by

$$
H\left(t, x, \mu^{*}(t, x), \lambda\right)=\frac{x e^{-\beta t}}{2 \sqrt{\gamma(t) x}}(-1-\alpha \gamma(t)) .
$$

Finally, for the HJBE to hold, we must have

$$
-2 \beta \gamma(t)+\dot{\gamma}(t)=-1-\alpha \gamma(t) \quad \Longleftrightarrow \quad \dot{\gamma}(t)+(\alpha-2 \beta) \gamma(t)=-1
$$

which has the solution

$$
\gamma(t)=\frac{-1}{\alpha-2 \beta}+c_{1} e^{-(\alpha-2 \beta) t},
$$

for some constant c_{1}. The boundary constraint $V(T, x)=0$ can be restated as $\gamma(T)=0$, which implies that

$$
c_{1}=\frac{1}{\alpha-2 \beta} e^{(\alpha-2 \beta) T} .
$$

Thus, the function $\gamma(t)$ that makes sure that $V(t, x)$ satisfies the HJBE is given by

$$
\gamma(t)=\frac{e^{-(t-T)(\alpha-2 \beta)}-1}{\alpha-2 \beta} .
$$

