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APPROVED TOOLS: Formula sheet for the course, printed collections of formulas
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PRELIMINARY GRADING: betyg 3 15 points
betyg 4 23 points
betyg 5 30 points

All solutions should be well motivated.

Good Luck!





1. (a) Find the control signal u(t) which satisfies the optimal control problem

minimize
u(·)

∫ T

0

(
x2(t) + u2(t)

)
dt

subject to ẋ1(t) = −x1(t) + u(t),
ẋ2(t) = x1(t)
x1(0) = a, x2(0) = 0,

for a fixed T > 0, using the PMP. (5p)
(b) Find the extremal to the functional

J(y) =
∫ 1

0

(
y2(t) + 4ẏ2(t)

)
dt,

satisfying y(0) = 1 and y(1) = 0. (5p)

2. Consider the problem

minimize
u(·)

1
2
(
x(T )

)2

subject to ẋ(t) = u(t),
x(0) = x0 given,
u(t) ∈ [−1, 1], for all t ∈ R.

(a) Show by the use of PMP that the optimal controller is given by

µ∗(t, x) = − sign (x). (4p)

(b) Show that the cost-to-go function V (t, x) that corresponds to the PMP
solution above is given by

V (t, x) = J∗(t, x) = 1
2

(
max

{
0, |x| − (T − t)

})2
. (3p)

(c) Show that the cost-to-go function above satisfies the HJBE:

−∂V
∂t

(t, x) = min
|u|≤1

{
f0(t, x, u) + ∂V

∂x
(t, x)Tf(t, x, u)

}
, V (T, x) = φ(x),

for all (t, x). (3p)
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3. Assume that we have a vessel whose maximum weight capacity is z and whose
cargo is to consist of different quantities of N different items. Let vk denote the
value of the kth type of item, and let wk denote the weight of the kth type of
item.

(a) Let xk be the used weight capacity of the vessel after the first k − 1 items
have been loaded and let the control uk be the quantity of item k to be
loaded on the vessel. Formulate the dynamic equation

xk+1 = f(k, xk, uk),

describing the process. (3p)
(b) Determine the constraint set U(k, xk) on the control signal uk. (3p)
(c) Formulate a DP recursion that solves the problem of finding the most valu-

able cargo satisfying the maximal weight capacity. Observe that you do not
need to solve the problem. (4p)

4. Consider the following problem

maximize
u(·)

∫ T

0
e−βt

√
u(t) dt

subject to ẋ(t) = αx(t)− u(t),
x(0) = x0 > 0,
x(t) ≥ 0, for all t ∈ R.

Determine a positive function γ(t) such that the value function

V (t, x) , −e−βt
√
γ(t)x,

satisfies the finite horizon HJBE:

−∂V
∂t

(t, x) = min
u

{
f0(t, x, u) + ∂V

∂x
(t, x)Tf(t, x, u)

}
, V (T, x) = φ(x)

for all (t, x), via the following steps:

(a) Show by minimizing the right hand side of the HJBE with respect to u that
µ(t, x) = x/γ(t) is an optimal control candidate. (4p)

(b) Determine γ(t) so that µ(t, x) above satisfies the HJBE. (6p)
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TSRT08: Optimal Control
Solutions

20190424

1. (a) The Hamiltonian is given by

H(t, x, u, λ) = x2 + u2 + λ1(−x1 + u) + λ2x1.

Pointwise minimization is obtained via

0 = ∂H

∂u
(t, x, u, λ) = 2u+ λ1 ⇒ u∗ = −1

2λ1,

since H is strictly convex in u. The adjoint equations are given by

λ̇1(t) = − ∂H
∂x1

(t, x(t), µ∗(t, x(t), λ(t)), λ(t)) = λ1(t)− λ2(t),

λ̇2(t) = − ∂H
∂x2

(t, x(t), µ∗(t, x(t), λ(t)), λ(t)) = −1

with boundary conditions

λ(T ) = ∂φ

∂x
(T, x(T )) ⇐⇒ λ1(T ) = λ2(T ) = 0

Thus, we get λ2(t) = T − t and

λ̇1(t) = λ1(t) + t− T, λ1(T ) = 0,

which has the solution
λ1(t) = −(t− T )− 1 + et−T

and the optimal control is

u∗(t) = −1
2λ1(t) = 1

2
(
1 + t− T − et−T

)
.

(b) Introducing x = y and u = ẏ, it holds that ẋ = u and the Hamiltonian is given by

H(t, x, u, λ) = x2 + 4u2 + λu.

The following equations must hold

λ̇ = −∂H
∂x

(t, x, u, λ) = −2x,

0 = ∂H

∂u
(t, x, u, λ) = 8u+ λ.

The latter yields λ̇ = −8u̇ = −8ÿ, which substituted into the first equation gives

−8ÿ = −2x = −2y ⇔ ÿ − 1
4y = 0,
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which has the solution
y(t) = c1e

t/2 + c2e
−t/2,

for some constants c1 and c2. The boundary constraints y(0) = 1 and y(1) = 0 yields(
1 1
e1/2 e−1/2

)(
c1
c2

)
=
(

1
0

)
,

which has the solution (
c1
c2

)
= 1
e− 1

(
−1
e

)
.

Thus,
y(t) = 1

e− 1(−et/2 + e1−t/2),

is the sought after extremal.

2. (a) The Hamiltonian is given by
H(t, x, u, λ) = λu

Pointwise minimization yields

µ(t, x) = arg min
|u|≤1

λu =


1, λ < 0
−1, λ > 0
ũ, λ = 0

= − sign (λ),

where ũ ∈ [−1, 1] is arbitrary. The adjoint equation is given by

λ̇(t) = −∂H
∂x

(t, x, u, λ) = 0, λ(T ) = ∂φ

∂x
(x(T )) = x(T )

which has the solution λ(t) = x(T ). We now have to cases:
• x(T ) 6= 0: In this case λ(t) 6= 0 for all t and we can write

µ(t, x) = − sign (λ) = − sign x(T ) = − sign x

The last equality holds since x will have the same sign as x(T ) during the whole state
trajectory.

• x(T ) = 0: In this case λ = 0 for all t and we may use any control signal ũ ∈ [−1, 1], which
obeys the constraint x(T ) = 0. One such control signal is

µ(t, x) = − sign x

since this will drive x to zero and stay there.
Consequently, one optimal control is

µ∗(t, x) = − sign (x).

(b) Since J∗(t, x) = 1
2 (x∗(T ))2, we need to find x∗(T ). It holds that

x(T )− x(t) =
∫ T

t

ẋ(τ) dτ =
∫ T

t

u(τ) dτ,

which can be written as
x(T ) = x(t)−

∫ T

t

sign {x(τ)} dτ. (1)

There are two cases:
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• x(t) > 0: In this case the controller will decrease x(t) until, if possible, x(T ) = 0. Thus, it
holds that

x(T ) = max {0,

from (1)︷ ︸︸ ︷
x(t)− (T − t)}

= max {0, |x(t)| − (T − t)}.

• x(t) < 0: In this case the controller will increase x(t) until, if possible, x(T ) = 0. Thus, it
holds that

x(T ) = min {0,

from (1)︷ ︸︸ ︷
x(t) + (T − t)} = −max {0,−x(t)− (T − t)}

= −max {0, |x(t)| − (T − t)}

Thus, the only difference between the two cases are the sign in front of the max and the optimal
cost-to-go function becomes

V (t, x) = J∗(t, x) = 1
2(x∗(T ))2 = 1

2

(
max

{
0, |x| − (T − t)

})2
.

(c) The function V (t, x) is differentiable and it holds that

∂V

∂t
(t, x) = max

{
0, |x| − (T − t)

}
,

∂V

∂x
(t, x) = sign (x) ·max

{
0, |x| − (T − t)

}
.

Substituting the above into the HJBE yields

−max
{

0, |x| − (T − t)
}

= min
|u|≤1

{
sign (x) · u

}
max

{
0, |x| − (T − t)

}
,

which can be seen to hold as an identity for all (t, x).

3. (a) With x1 = 0, the dynamic equation may be written as

xk+1 = xk + wkuk.

(b) Since for each item k, we must have xk ≤ z for all k and especially

xk+1 = xk + wkuk ≤ z ⇐⇒ uk ≤ (z − xk)/wk.

Furthermore, it is only possible to ship integer quantities which implies that u ∈ {0, 1, 2, . . .}.
(c) The reward function is given by f0(k, xk, uk) = vkuk, which yields the DP algorithm

J(N + 1, x) = 0

J(n, x) = max
0≤un≤(z−xn)/wn

un∈{0,1,2,...}

{
vnun + J(n+ 1, xn + wnun)

}
, n = N,N − 1, . . . , 1.

4. It holds that

∂V

∂t
(t, x) = βe−βt

√
γ(t)x− 1

2
γ̇(t)x√
γ(t)x

e−βt = xe−βt

2
√
γ(t)x

(
2βγ(t)− γ̇(t)

)
∂V

∂x
(t, x) = 1

2
γ(t)√
γ(t)x

e−βt.

Thus,

H(t, x, u, λ) = f0(t, x, u) + ∂V

∂x
(t, x)T f(t, x, u) = −e−βt

√
u+ 1

2
γ(t)√
γ(t)x

e−βt(αx− u),
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which has an extremum at

∂H

∂u
(t, x, u, λ) = e−βt

2

(
− 1√

u
+ γ(t)√

γ(t)x

)
= 0 =⇒ µ∗(t, x) = x

γ(t) .

Since
∂2H

∂u2 (t, x, µ∗(t, x), λ) = e−βt

4(x/γ(t))3/2 > 0,

it also constitutes a minimum. The Hamiltonian is then given by

H(t, x, µ∗(t, x), λ) = xe−βt

2
√
γ(t)x

(
− 1− αγ(t)

)
.

Finally, for the HJBE to hold, we must have

−2βγ(t) + γ̇(t) = −1− αγ(t) ⇐⇒ γ̇(t) + (α− 2β)γ(t) = −1

which has the solution
γ(t) = −1

α− 2β + c1e
−(α−2β)t,

for some constant c1. The boundary constraint V (T, x) = 0 can be restated as γ(T ) = 0, which
implies that

c1 = 1
α− 2β e

(α−2β)T .

Thus, the function γ(t) that makes sure that V (t, x) satisfies the HJBE is given by

γ(t) = e−(t−T )(α−2β) − 1
α− 2β .
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