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1. We are interested in computing optimal transportation routes in a circular city.
The cost for transportation per unit length is given by a function g(r) that only
depends on the radial distance r to the city center. This means that the total
cost for transportation from a point P1 to a point P2 is given by∫ P2

P1

g(r)ds

where s represents the arc length along the path of integration. In polar coordi-
nates (θ, r) the total cost reads∫ P2

P1

g(r)

√
1 + (rθ̇)2dr

where θ = θ(r), and θ̇ = dθ/dr.

(a) Formulate the problem of computing an optimal path as an optimal control
problem (2p)

(b) For the case of g(r) = α/r for some positive α show that any optimal path
satisfies the equation θ = a log r + b for some constants a and b. (5p)

(c) Show that if the initial point and the final point are at the same distance
from the origin, then the optimal path is a circle segment. You may use the
claim in (b). (3p)

2. Consider the following optimal control problems:

minimize
u(·)

∫ tf

0

(
x2(t) + u2(t)

)
dt (1)

subject to ẋ(t) = x(t) + u(t),

x(0) = 1

minimize
u(·)

∫ tf

0

(
x(t) + u2(t)

)
dt (2)

subject to ẋ(t) = x(t) + u(t) + 1,

x(0) = 0

minimize
u(·)

∫ tf

0

(
x(t) + u2(t)

)
dt (3)

subject to ẋ(t) = x(t) + u(t) + 1,

x(0) = 0

x(tf ) = 1.
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(a) Suppose you must solve these problems numerically. Describe advantages
and disadvantages of (A) the discretization method (constrained nonlinear
program), (B) the shooting method (boundary condition iteration), and (C)
the gradient method (first order gradient search of the cost function) for
solving these three optimal control problems. (5p)

(b) Make comments on if and how the problem (1) can be solved by using
HJBE. Note that you do not necessarily have to solve the problems, but
your statements must be well motivated. (2p)

(c) Make comments on if and how the problem (3) can be solved by using
PMP. Note that you do not necessarily have to solve the problems, but your
statements must be well motivated. (3p)

3. Consider a constant-power rocket

ẋ1 = u

ẋ2 = u2

where x1 is velocity and x2 is inversely proportional to the mass of the rocket,
while u is the acceleration caused by the thrust. We assume that |u| ≤ 1. Given
the initial condition x(0) = x0 it is desirable to minimize the final time tf , such
that x(tf ) = xf , where xf is given.

(a) Formulate necessary conditions for optimality using PMP. (2p)

(b) Show that the candidates for the optimal control signal u using PMP are
u?(t) = c ∀t for some constant c ∈ [−1, 1], and u?(t) ∈ {−1, 1}, i.e. bang-
bang control. (4p)

(c) Compute the regions for the initial value x0 for which the candidates in
(b) are feasible with respect to the final value xf . Notice that you need to
compute the regions for all different values of xf . (4p)

4. We consider a discrete-time hidden Markov model with state x(k) and output
y(k) at time k. We define the probability

p(x̄) = P{x(0) = x0, . . . , x(N − 1) = xN−1, y(0) = y0, . . . , y(N − 1) = yN−1}

where x̄ = (x0, . . . , xN−1) ∈ XN , ȳ = (y0, . . . , yN−1) ∈ Y N , and where X and Y
are some sets to be defined in more detail later. We assume that the sequence of
observations ȳ is given, and we are interested in estimating the sate sequence x̄
based on the observation of ȳ. We are going to do this by maximizing p(x̄), which
is known as maximum likelihood estimation. A key feature of a hidden Markov
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model is that it satisfies what is called the Markov property, i.e.

p(x̄) = P{y(N − 1) = yN−1|x(N − 1) = xN−1}
× P{x(N − 1) = xN−1|x(N − 2) = xN−2}
× P{y(N − 2) = yN−2|x(N − 2) = xN−2}
× P{x(N − 2) = xN−2|x(N − 3) = xN−3}
...

× P{y(1) = y1|x(1) = x1}P{x(1) = x1|x(0) = x0}
× P{y(0) = y0|x(0) = x0}P{x(0) = x0}

(a) Let V (0, x) = P{y(0) = y0|x(0) = x}P{x(0) = x} and define the recursion

V (k, x) = P{y(k) = yk|x(k) = x}max
u∈X

P{x(k) = x|x(k− 1) = u}V (k− 1, u)

for k = 1, . . . , N − 1, and let V (N) = maxx∈X V (N − 1, x). Show that

max
x̄∈XN

p(x̄) = V (N)

and that the optimal x̄ is such that xk−1 is the maximizing u in iteration k
above.Hint: It is a good idea to consider log p(x̄). (5p)

(b) Consider a primitive clinic in a village. People in the village have the pro-
perty that they are either healthy or have a fever. They can only tell if
they have a fever by asking the doctor in the clinic. The doctor makes a
diagnosis of fever by asking patients how they feel. Villagers only answer
that they feel normal, dizzy or cold. This defines a hidden Markov model
with X = {α1, α2} and Y = {β1, β2, β3}, where α1 =healthy, α2 =fever,
β1 =normal, β2 =cold, and β3 =dizzy. Introduce the notation:

aij = P{x(k + 1) = αj|x(k) = αi}
bij = P{y(k) = βj|x(k) = αi}

Also let the matrices A and B be defined such that element (i, j) of the
matrix is equal to aij and bij, respectively. Consider the case when

A =

[
0.7 0.3
0.4 0.6

]
; B =

[
0.5 0.4 0.1
0.1 0.3 0.6

]
and assume that P{x(0) = α1} = 0.6 and P{x(0) = α2} = 0.4. The doctor
has for a patient observed the first day normal, the second day cold, and
the third day dizzy. What is the most likely value of the condition for the
patient, i.e. the most likely value of x̄? Use the recursion in (a). (5p)
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TSRT08: Optimal Control
Solutions

20190118

1. (a) By introducing the control u = θ̇, we can specify the optimal control problem

minimize
u

∫ r2

r1

g(r)
√

1 + (r · u(r))2dr

subject to θ̇ = u

θ(r1) = θ1

θ(r2) = θ2

where r1, θ1 and r2, θ2 are the polar coordinates of the points P1 and P2, respectively.
(b) With g(r) = α/r, the Hamiltonian is given by

H(r, θ, u, λ) = α

r

√
1 + (r · u)2 + λ · u

Further we have that
∂H

∂u
(r, θ, u, λ) = α

r · u√
1 + (r · u)2

+ λ

∂2H

∂u2 (r, θ, u, λ) = α
r

(1 + (r · u)2)3/2

Since α > 0 and r > 0 we have that ∂2H
∂u2 > 0 ∀u. Hence, H(r, θ, u, λ) is strictly convex in u.

Therefor, pointwise minimization yields

0 = ∂H

∂u
(r, θ∗(r), u∗(r), λ) = α

r · u∗(r)√
1 + (r · u∗(r))2

+ λ(r)

The adjoint equation is given by

λ̇ = −∂H
∂θ

(r, θ, u, λ) = 0

without final constraint on λ(r2) since we do have a final constraint on θ(r2). This equation has
the solution

λ(r) = c

for some constant c and the optimal control is

α
r · u∗(r)√

1 + (r · u∗(r))2
= −c

This requires r · u∗(r) to be constant, which can be written as

ru∗(r) = a ⇒ u∗(r) = a

r

for some constant a. This gives the optimal path

θ̇ = a

r
⇒ θ = a log r + b

which we were supposed to show.
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(c) Reformulate the optimal path as a function of theta

r(θ) = e
θ−b
a = BeAθ

where A = 1/a and B = e−b/a. We now require that the initial and final point shall have the
same radius r0, such that r(θ1) = r0 and r(θ2) = r0. This gives

r0 = BeAθ1 , r0 = BeAθ2 ⇒ A = 0, B = r0

which gives
r(θ) = r0, for θ1 ≤ θ ≤ θ2

This corresponds to a path with constant radius, i.e. a circle segment.

2. (a) • The discretization method is straightforward to apply to all problems. There exist many
good algorithms for nonlinear optimization. Drawbacks are the large number of variables and
constraints, and that the solution may not converge to the solution of the original problem.

• A shooting method is straightforward to apply to all problems, but it is crucial to find a good
initial guess of λ(0). The transition matrix may sometimes be ill conditioned when using a
shooting method, but that is a minor problem for these quite simple problems.

• A gradient method is straightforward to apply to (1) and (2), but (3) requires a slightly more
complex gradient algorithm due to the the terminal constraint. Convergence tends to be slow
for the gradient methods, but this is a minor problem for these quite simple problems.

(b) Problem (1) is a linear-quadratic problem that is possible to solve analytically with HJBE. Use
V (t, x) = P (t)x2, where P (t) is a positive function that can be obtained by solving the Riccati
equation. The optimal feedback law is µ(t, x) = −P (t)x.

(c) The problem can be solved by defining the Hamiltonian, minimize with respect to u and solve
the adjoint equations. Since Sf is a set with just one point then there is no constraint on
λ(tf ). Therefor, a unknown constant will remain in the equation for λ and hence also for u. By
substituting the control signal in the dynamic model with this control law we obtain a linear ODE
of order one that is straightforward to solve and by using the initial and final state constraints all
constants can be found.

3. (a) The optimal control problem can be stated as

minimize
∫ tf

0
1dt

subject to ẋ1 = u

ẋ2 = u2

x(0) = x0

x(tf ) = xf

The Hamiltonian is given by

H(t, x, u, λ) = λ0 + λ1u+ λ2u
2

Pointwise minimization yields

µ(t, x, λ) = arg min
|u|≤1

H(t, x, u, λ) = arg min
|u|≤1

λ1u+ λ2u
2

and a candidate for optimal control is

u∗(t) = µ(t, x(t), λ(t))

The adjoint equations are given by
λ̇1 = 0, λ̇2 = 0

Since we have x(tf ) = xf , we do not have any boundary conditions on λ(tf ).
Finally, since the system is autonomous, we also have the constraint

H(t, x∗(t), u∗(t), λ(t)) = 0 ⇒ λ0 + λ1(t)u∗(t) + λ2u
∗2(t) = 0 (1)
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(b) The solution of the adjoint equations is given by

λ1(t) = c1, λ2(t) = c2

for some constants c1 and c2. We now consider four different cases
Case Condition Extremal control
(i) c2 > 0 u∗(t) = c, c ∈ [−1, 1]
(ii) c1 6= 0, c2 ≤ 0 u∗(t) = c, c = −1 or 1
(iii) c1 = 0, c2 < 0 u∗(t) = −1 or 1
(iv) c1 = 0, c2 = 0 Not feasible

Case (i), c2 > 0: In this case the optimal value is either at the u where ∂H
∂u = 0 if feasible, or at

any of the two boundaries −1 or 1. We have that

0 = ∂H

∂u
= c1 + 2c2u ⇒ u = −c12c2

Further, since

0 = ∂2H

∂u2 = 2c2 > 0

this is indeed a minimum point. This gives the unique minimizing argument

µ(t, x, λ) = arg min
|u|≤1

c1u+ c2u
2 =


−1, −c1

2c2
< −1

−c1
2c2

, −1 ≤ −c1
2c2
≤ 1

1, −c1
2c2

> 1

Case (ii), c1 6= 0, c2 ≤ 0: In this case either −1 or 1 will be optimal depending on the sign of c1.
We know that ∂H

∂u = 0 is not a candidate since ∂2H
∂u = 2c2 ≤ 0 and hence does not correspond

to a minimum point. This gives the unique minimizing argument

µ(t, x, λ) = arg min
|u|≤1

c1u+ c2u
2 =

{
−1 if c1 > 0
1 if c1 < 0

Case (iii), c1 = 0, c2 < 0: In this case we do not have a unique minimizing argument, since both
−1, 1 achieve the same minimal value

µ(t, x, λ) = arg min
|u|≤1

c2u
2 = −1 or 1

Case (iv), c1 = 0, c2 = 0: With c1 = c2 = 0, eq. (1) gives that λ0 = 0. However, λ̃ =
[λ1, λ2, λ3]T has to be non-zero. Hence, this solution is not feasible.

To summarize, all the feasible cases can be combined into just two cases, where Case (A) corre-
sponds to Case (i) and (ii), and Case (B) corresponds to Case (iii)

u∗(t) = c, c ∈ [−1, 1] Case (A)
u∗(t) = −1 or 1 Case (B)

For Case (A), u∗(t) will be constant, and for Case (B) we will have a bang-bang controller which
can switch between -1 and 1 an arbitrary number of times.

(c) We consider the two cases that we derived in the previous question
Case (A) The trajectory with the constant control u∗(t) = c will be

x1(t) = ct+ x1,0

x2(t) = c2t+ x2,0
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Together with the final constraint x(tf ) = xf , this gives

x1(tf ) = ctf + x1,0 = x1,f

x2(tf ) = c2tf + x2,0 = x2,f

By solving for c and tf we get

c = x2,f − x2,0

x1,f − x1,0
, tf = (x1,f − x1,0)2

x2,f − x2,0

Since we require that |c| ≤ 1 and tf > 0, this control is feasible if

x2,f − x2,0 > 0, and |x1,f − x1,0| ≥ |x2,f − x2,0|

Case (B) The trajectory with the bang-bang control where u∗(t) = −1 or 1 will be

x1(t) = I(t) + x1,0

x2(t) = t+ x2,0

where

I(t) =
∫ t

0
u∗(s)ds ⇒ |I(t)| ≤

∫ t

0
|u∗(s)|ds

∫ t

0
1ds = t

which is fulfilled with equality if u∗(t) is constant (zero switches). Together with the final
constraint x(tf ) = xf , this gives

x1(tf ) = I(tf ) + x1,0 = x1,f

x2(tf ) = tf + x2,0 = x2,f

By solving for I(tf ) and tf we get

I(tf ) = x1,f − x1,0, tf = x2,f − x2,0

Since we require that |I(tf )| ≤ tf and tf > 0, this control is feasible if

x2,f − x2,0 > 0, and |x1,f − x1,0| ≤ |x2,f − x2,0|

For this case, the candidate for optimal control is not unique. Any feasible bang-bang control
is a valid candidate, see Figure 1.

To summarize, a candidate for optimal control exist only if x2,f−x2,0 > 0. Further if |x1,f−x1,0| ≥
|x2,f −x2,0| a constant control u∗(t) = x2,f−x2,0

x1,f−x1,0
is a valid candidate for optimal control, otherwise

any feasible bang-bang is a valid candidate, see Figure 1.

4. (a) In order to formulate the maximum likelihood estimation problem as an discrete-time optimal
control problem, we choose to maximize log p(x̄) instead of maximizing p(x̄), which we can do
since log(·) is a strictly increasing function. From the question description we have

log p(x̄) = logP{y(0) = y0|x(0) = x0}+ logP{x(0) = x0}

+
N−1∑
k=1

logP{y(k) = yk|x(k) = xk}+ logP{x(k) = xk|x(k − 1) = xk−1}

By introducing

J(x̄) = log p(x̄)
uk = xk−1

ū = (u1, . . . uN ) = x̄

φ(x) = logP{y(0) = y0|x(0) = x}+ logP{x(0) = x}
f0(k, x, u) = logP{y(k) = yk|x(k) = x}+ logP{x(k) = x|x(k − 1) = u}
f(k, x, u) = u
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Figure 1: Initial state regions

we can formulate the maximization problem as the following optimal control problem

maximize
ū

J(ū) =φ(x0) +
N−1∑
k=1

f0(k, xk, uk)

subject to xk−1 = f(k, xk, uk)

The solution to the problem can be found with dynamic programming. Since the dynamics is
running backwards in time, the dynamics programming recursions will run in reverse order.

J(0, x) = φ(x)
J(k, x) = max

u∈X
{f0(k, x, u) + J(k − 1, f(k, x, u))}, k = 1, . . . , N − 1

At stage N − 1 we have optimized for all u1, . . . , uN−1 except uN . We then have

J(N − 1, xN−1) = max
(u1,...,uN−1)∈XN−1

J(ū)

where xN−1 = uN . Hence

max
x̄∈XN

J(x̄) = max
ū∈XN

J(ū) = max
x

J(N − 1, x)

By identifying

log V (k, x) = J(k, x) and log V (x̄) = J(x̄)

we get the following recursions

V (0, x) = P{y(0) = y0|x(0) = x}P{x(0) = x}
V (k, x) = P{y(k) = yk|x(k) = x}max

u∈X

[
P{x(k) = x|x(k − 1) = u}V (k − 1, u)

]
, k = 1, . . . , N − 1

max
x̄∈XN

V (x̄) = max
x∈X

V (N − 1, x)
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where the optimal solution is given by

x∗N−1 = arg max
u∈X

V (N − 1, x)

x∗k−1 = u∗k = µ(k, x∗k), if k < N

with

µ(k, x) = arg max
u∈X

[
P{x(k) = x|x(k − 1) = u}V (k − 1, u)

]
(b) We have the optimization problem on the form from the previous question with N = 3.

Stage k = 0: The first day, the doctor is making the observation y0 = β1, which gives

V (0, αi) = P{y(0) = β1|x(0) = αi}P{x(0) = αi}
= bi1P{x(0) = αi}

This gives

V (0, α1) = b11 ∗ 0.6 = 0.5 ∗ 0.6 = 0.3
V (0, α2) = b21 ∗ 0.4 = 0.1 ∗ 0.4 = 0.04

x V (0, x) u∗

α1 0.3 -
α2 0.04 -

Stage k = 1: The second day, the doctor is making the observation y1 = β2, which gives

V (1, αi) = P{y(1) = β2|x(1) = αi} max
u∈{αi,α2}

[
P{x(1) = αi|x(0) = u}V (0, u)

]
= bi2 max

i∈{1,2}
{a1iV (0, α1), a2iV (0, α2)}

This gives

V (1, α1) = b12 ∗max{a11V (0, α1), a21V (0, α2)} = 0.4 ∗max{0.7 ∗ 0.3, 0.4 ∗ 0.04} = 0.4 ∗ 0.7 ∗ 0.3 = 0.084
V (1, α2) = b22 ∗max{a12V (0, α1), a22V (0, α2)} = 0.3 ∗max{0.3 ∗ 0.3, 0.6 ∗ 0.04} = 0.3 ∗ 0.3 ∗ 0.3 = 0.027

x V (0, x) u∗

α1 0.084 α1
α2 0.027 α1

Stage k = 2: The third day, the doctor is making the observation y2 = β3. In a similar fashion
as in the previous step we get

V (2, αi) = bi3 max{a1iV (0, α1), a2iV (0, α2)}

This gives

V (2, α1) = b13 ∗max{a11V (1, α1), a21V (2, α2)} = 0.1 ∗max{0.7 ∗ 0.084, 0.4 ∗ 0.027} = 0.1 ∗ 0.7 ∗ 0.084
V (2, α2) = b23 ∗max{a12V (1, α1), a22V (2, α2)} = 0.6 ∗max{0.3 ∗ 0.084, 0.6 ∗ 0.027} = 0.6 ∗ 0.3 ∗ 0.084

x V (2, x) u∗

α1 0.07*0.084 α1
α2 0.18*0.084 α1
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Since V (2, α2) > V (2, α1) we have that

x∗2 = arg max
x∈{α1,α2}

V (2, x) = α2

To summarize, the system evolves as follows:

k x∗k u∗k V (k, x∗k)
2 α2 α1 0.18*0.084
1 α1 α1 0.084
0 α1 - 0.3

Thus, the most likely condition for the patient is that he/she was healthy the first and second
day, x∗0 = x∗1 = α1, and had fever the third day, x∗2 = α2.
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