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1. (a) One wishes to find a control signal u on the interval 0 ≤ t ≤ 1 that takes
the system

ẋ = u

from x(0) = 1 to x(1) = 0 and minimizes the criterion∫ 1

0

u2

2
dt

Show that the necessary conditions for optimality are satisfied by a constant
u-value. Compute this constant value. (5p)

(b) The system
ẋ = −x+ u, |u| ≤ 1

is to be controlled so that x(1) = 0 and the criterion

J =

∫ 1

0

|u| dt

minimized. A possible control is

u(t) =

{
0 0 ≤ t < 0.5

−1 0.5 ≤ t ≤ 1

Show that this control satisfies the necessary conditions for optimality for
some value of x(0) (It is not necessary to specify the exact value of x(0).)
(5p)

2. A businessman operates out of a van that he sets up in one of two locations on
each day. If he operates in location i (where i = 1, 2) on day k he makes a known
and predictable profit denoted rki . However, each time he moves from one location
to the other, he pays a setup cost c. The businessman wants to maximize his total
profit over N days.

(a) The problem can be formulated as a shortest path problem (SPP) where
the node (i, k) represents location i at day k. Let s and e be the start node
and the end node, respectively. Further, denote ī as the location that is not
equal to i, i.e. 1̄ = 2 and 2̄ = 1. The costs of all edges are:

• s to (i, 1) with cost −r1
i

• (i, k) to (i, k + 1) (i.e. no switch) with cost −rk+1
i , k = 1, ..., N − 1

• (i, k) to (̄i, k + 1) (i.e. switch) with cost c− rk+1
ī

, k = 1, ..., N − 1

• (i, N) to e with cost 0

Write a figure to illustrate the SPP and the definitions of variables and pa-
rameters. Write the corresponding dynamic programming algorithm. (Note
that you do not have to solve the problem.) (5p)
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(b) Suppose he is at location i on day k − 1 and let

Rk
i = rkī − r

k
i .

Show that if Rk
i ≤ 0 it is optimal to stay at location i, while if Rk

i ≥ 2c it is
optimal to switch. You can use the following lemma.

Lemma: For every k = 1, 2, ..., N it holds:

|J(k, i)− J(k, ī)| ≤ c

where J(k, i) is the optimal cost-to-go function at stage k for state i. (5p)

3. (a) The system
ẋ = u

is controlled to minimize the criterion∫ ∞
0

(x2m + u2) dt

where m is a positive integer. Derive a control law u = k(x) that minimizes
the criterion. (5p)

(b) Consider an analogous discrete time problem. Minimize

N−1∑
0

(x(t)2m + u(t)2) + x(N)2m

for the system
x(t+ 1) = x(t) + u(t)

Write down the dynamic programming recursion for solving the problem.
Explain why it is difficult to solve the problem explicitly if m > 1. (5p)

4. We consider a linear system in discrete time:

xk+1 = Axk + vk

yk = Cxk + ek

where xk and yk are n and p dimensional vectors, repectively, and k = 0, . . . , N−1.
The initial state x0 is given. We assume that the sequences of vectors vk and ek are
zero mean identically distributed and independet random vectors with symmetric
and postive definite covariance matrices R1 and R2, respectively. The likelihood
function L(x̄, v̄) satisfies

− logL(x̄, v̄) =
1

2

N∑
k=0

(yk − Cxk)T R−1
2 (yk − Cxk)

+
1

2

N−1∑
k=0

vTkR
−1
1 vk + c
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where c is some constant, and where x̄ = (x1, . . . , xN) and v̄ = (v0, . . . , vN−1). We
are interested in solving the maximum likelihood problem of maximizing L(x̄, v̄)
with respect to (x̄, v̄) under the constraint of the dynamic recursion above and
for given measurements ȳ = (y0, . . . , yN).

Show that the optimal x̄ satisfies the following two-point boundary problem for
some sequence of Lagrange multipliers λk:

xk+1 = Axk −R1λk+1, k = 0, . . . , N − 1

λk = ATλk+1 − CTR−1
2 (yk − Cxk) , k = 1, . . . , N − 1

with boundary conditions x0 given and λN = −CTR−1
2 (yN − CxN). (10 p)

3



TSRT08: Optimal Control
Solutions

20180404

1. (a) We will solve the problem
min
u
H(u, λ) (1)

where H(u, λ) = u2

2 + λu and λ fulfill

λ̇ = −Hx(u∗, λ) = 0 (2)
λ(1) = ν, ν ∈ R (3)

Equation (1) is minimized by u = −λ. Equation (2) and (3) give that λ = ν. This results in
x(t) = −νt+ C1. The boundary conditions x(0) = 1 and x(1) = 0 give u(t) = −1.

(b) The Hamiltonian is
H(x, u, λ) = |u|+ λ(u− x)

and for the end condition we have

φ(x) = 0, g(x) = x

The multipliers λ shall fulfill

λ̇(t) = −Hx(x∗, u∗, λ) = λ(t)
λ(1) = φx(x∗(1)) + νgx(x∗(1)) = ν, ν ∈ R

This means that λ(t) = νet−1, this means positive and increasing or negative and decreasing.
We will minimize the Hamiltonian with respect to u for each time instance. This is equivalent
to minimizing

|u|+ λu = (sign(u) + λ)︸ ︷︷ ︸
σ

u

If σ > 0 we want to choose u as the smallest feasible negative value and if σ < 0 we want to
choose u as the largest feasible positive value. Consequently, the following cases minimize the
Hamiltonian:
Positive λ {

u = −1 and λ > 1
u = 0 and 0 ≤ λ ≤ 1

Negative λ {
u = 1 and λ < −1
u = 0 and − 1 ≤ λ ≤ 0

Our control candidate contains the control signals 0,−1 which requires a positive λ. Thus, we
have to find a ν such that λ starts with a positive value less than 1 and passes 1 at the time 0.5.
This results in

1 = νe− 1
2 ⇒ ν = e

1
2

This ν fulfills the requirements and the optimality conditions are satisfied for the suggested
control.
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Figure 1: The shortest path problem in exercise 2.

2. (a) The shortest path from s to e maximizes the total profit over N days, see figure 1.
The corresponding dynamic programming algorithm is

J(N, i) = 0
J(k, i) = min{−rk+1

i + J(k + 1, i)︸ ︷︷ ︸
,qk+1

i
, stay

, c− rk+1
ī

+ J(k + 1, ī)︸ ︷︷ ︸
,qk+1

ī
, switch

}

J(0, s) = min{−r1
1 + J(1, 1), − r1

2 + J(1, 2)}

(b) Consider the difference Qki = qki − qkī . If Qki ≤ 0 it is optimal to stay in i, and if Qki ≥ 0 it is
optimal to switch to ī.

Qki = qki − qkī
= −rki + J(k, i)− c+ rkī − J(k, ī)
= Rki − c+ J(k, i)− J(k, ī)

By using the lemma we have
Rki − 2c ≤ Qki ≤ Rki .

Thus, if Rki ≤ 0 then Qki ≤ 0 and it is optimal to stay. If Rki ≥ 2c then Qki ≥ 0 and it is optimal
to switch.

3. (a) The problem gives the following Hamilton-Jacobi-equation

0 = min
u

(Vxu+ u2 + x2m). (4)

Minimizing with respect to u gives u = −Vx/2 and if you plug that into (4) one gets

0 = −V
2
x

4 + x2m ⇒ Vx = ±2|x|m.

Since V shall be a value function we require V (x) > 0 for x 6= 0 and V (0) = 0. This means that
the sign of Vx shall be

Vx =
{

2|x|m x > 0,
−2|x|m x < 0,

which gives V (x) = 2|x|m+1/(m+ 1). The optimal feedback is then

u =
{
−|x|m x > 0,
|x|m x < 0.
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(b) The dynamic programming recursion is given by

J(N, x) = φ(x)
J(n, x) = min

u
{f0(n, x, u) + J(n+ 1, f(n, x, u))},

which is our case will be

J(N, x) = x2m

J(n, x) = min
u
{x2m + u2 + J(n+ 1, x+ u)},

For the case m = 1 this is a LQ problem (with finite time horizon). This can be solved with
a cost-to-go function which is quadratic in x, this means with the ansatz J(n, x) = α(n)x2.
However, with m > 1, the polynomial order of J(n, x) will inevitably increase as we proceed
backward in time which makes it difficult to find an analytical solution.

4. By interpreting vk as control input, we can specify a discrete-time optimal control problem on the
standard form

minimize φ(xN ) +
N−1∑
k=0

f0(k, xk, vk)

subject to xk+1 = f(k, xk, vk)
x0 given

where

φ(x) = 1
2(yN − x)TR−1

2 (yN − x) + c,

f0(k, x, v) = 1
2(yk − x)TR−1

2 (yk − x) + 1
2v

TR−1
1 v,

f(k, x, v) = Ax+ v.

We will use discrete-time PMP to solve the optimal control problem above. We do that by first
defining the Hamiltonian, which is given by

H(k, x, v, λ) = f0(k, x, v) + λT f(k, x, v)

= 1
2(yk − x)TR−1

2 (yk − x) + 1
2v

TR−1
1 v + λT (Ax+ v)

Since R1 is positive definite, also R−1
1 is positive definite. The quadratic form vTR−1

1 v, and conse-
quently also the Hamiltonian H, is therefore strictly convex in v. Pointwise minimization with respect
to v then yields

0 = ∂H

∂v
(k, x, v, λ) = R−1

1 v + λ⇒

v = −R1λ

and the candidate optimal control is given by v∗
k = −R1λk+1.

The two-point boundary value problem is now given by

xk+1 = ∂H

∂λ
(k, xk, v∗

k, λk+1) = Axk + v∗
k = Axk −R1λk+1, k = 0, . . . , N − 1

λk = −∂H
∂x

(k, xk, v∗
k, λk+1) = −CTR−1

2 (yk − xk) +ATλk+1, k = 1, . . . , N − 1

with the boundary condition x0 given and

λN = ∂φ

∂x
(xN ) = −CTR−1

2 (yN − xN ).
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