
EXAM IN OPTIMAL CONTROL

ROOM: U14, U15

TIME: January 13, 2018, 8–12

COURSE: TSRT08, Optimal Control

PROVKOD: TEN1

DEPARTMENT: ISY

NUMBER OF EXERCISES: 4

NUMBER OF PAGES (including cover pages): 5

RESPONSIBLE TEACHER: Anders Hansson, phone 070–3004401

VISITS: 9:00, 11:00

COURSE ADMINISTRATOR: Ninna Stensg̊ard, phone: 013–282225, ninna.stensgard@liu.se

APPROVED TOOLS: Formula sheet for the course, printed collections of formulas
and tables, calculator.

SOLUTIONS: Linked from the course home page after the examination.

The exam can be inspected and checked out 2018-02-01 at 12.30-13.00 in Ljungeln,
B-building, entrance 27, A-corridore to the right.

PRELIMINARY GRADING: betyg 3 15 points
betyg 4 23 points
betyg 5 30 points

All solutions should be well motivated.

Good Luck!





1. (a) Solve the optimal control problem

minimize
u(·)

∫ T

0

(
x(t) + u2(t)

)
dt

subject to ẋ(t) = x(t) + u(t) + 1,

x(0) = 0.

for a fixed T > 0, using the PMP. (5p)

(b) Find the extremal to the functional

J(y) =

∫ 1

0

(
y2(t) + ẏ2(t)

)
dt,

satisfying y(0) = 0 and y(1) = 1. (5p)

2. We are interested in text justification which is about making lines in a text of N
words have about the same length. More precisely we let the line length l(i, j)
be the characters of words i through j including counting blanks inbetween the
words. We also let L be the maximum allowed length of a line. Then f0(i, j),
which we call the badness of a line with words i through j, is given by

f0(i, j) = (L− l(i, j))3, 0 ≤ l(i, j) ≤ L

and f0(i, j) = ∞ if l(i, j) > L. We are intested in the minimal overall badness
defined as:

J = min
partition of text

K∑
k=1

f0(ik, jk)

Here the partition is defined such that i1 = 1, ik+1 = jk + 1 and jK = N for
some K, where K is the number of lines. Notice that we do not know beforehand
how many lines there will be, and that this will come out of the optimal solution.
Introduce also the minimal badness if starting with word i and considering the
remaining part of the text:

J(i) = min
partion of text from word i

Ki∑
k=1

f0(ik, jk)

Then it can be shown that

J(i) = min
i≤j≤N

(f0(i, j) + J(j + 1))

with J(N + 1) = 0. You should now consider the text “TO BE OR NOT TO
BE”. Your task is to compute the optimal partition for this text such that the
overall badness is minimized when L = 6. What is the resulting overall badness?
Moreover, redo your caculations when the text instead is “BE OR NOT TO BE”.
(10p)
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3. Consider the following optimal control problems:

minimize
u(·)

∫ tf

0

(
x2(t) + u2(t)

)
dt (1)

subject to ẋ(t) = x(t) + u(t),

x(0) = 1

minimize
u(·)

∫ tf

0

(
x(t) + u2(t)

)
dt (2)

subject to ẋ(t) = x(t) + u(t) + 1,

x(0) = 0

minimize
u(·)

∫ tf

0

(
x(t) + u2(t)

)
dt (3)

subject to ẋ(t) = x(t) + u(t) + 1,

x(0) = 0

x(tf ) = 1.

(a) Suppose you must solve these problems numerically. Describe advantages
and disadvantages of (A) the discretization method (constrained nonlinear
program), (B) the shooting method (boundary condition iteration), and (C)
the gradient method (first order gradient search of the cost function) for
solving these three optimal control problems. (5p)

(b) Make comments on if and how the problem (1) can be solved by using
HJBE. Note that you do not necessarily have to solve the problems, but
your statements must be well motivated. (2p)

(c) Make comments on if and how the problem (3) can be solved by using
PMP. Note that you do not necessarily have to solve the problems, but your
statements must be well motivated. (3p)

4. Consider the problem of minimizing the integral of the square of the so-called
jerk of a trajectory from a current measured position, velocity and acceleration
x(t) to the origin, i.e.

min
u

∫ tf

t

u2(s)ds

s.t. ẋ(s) = Ax(s) +Bu(s), x(tf ) = 0

Notice that the initial value is x(t). The matrices are

A =

0 1 0
0 0 1
0 0 0

 ; B =

0
0
1
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(a) Use PMP to show that the following TPBVP

ẋ(s) = Ax(s)− 1

2
BBTλ(s)

λ̇(s) = −ATλ(s)

with boundary conditions x(t) given and x(tf ) = 0 is a necessary condition
for an optimal trajectory, and that the optimal u is given by

u(s) = −1

2
BTλ(s)

(2 p)

(b) Show that a solution to the TPBVP when the boundary conditions are
neglected can be expressed as

λ1(s) = c1

λ2(s) = −c1s̄+ c2

λ3(s) =
1

2
c1s̄

2 − c2s̄+ c3

x3(s) = − 1

12
c1s̄

3 +
1

4
c2s̄

2 − 1

2
c3s̄+ c4

x2(s) = − 1

48
c1s̄

4 +
1

12
c2s̄

3 − 1

4
c3s̄

2 + c4s̄+ c5

x1(s) = − 1

240
c1s̄

5 +
1

48
c2s̄

4 − 1

12
c2s̄

3 +
1

2
c4s̄

2 + c5s̄+ c6

where s̄ = s− t, and where ci, i = 1, 2, . . . , 6 are some constants. (2 p)

(c) Show that the boundary conditions implies that

c4 = x3(t); c5 = x2(t); c6 = x1(t)

and that the remaining constants have to satisfy the following linear system
of equations− 1

12
α3 1

4
α2 −1

2
α

− 1
48
α4 1

12
α3 −1

4
α2

− 1
240
α5 1

48
α4 − 1

12
α3

c1c2
c3

 =

 −x3(t)
−αx3(t)− x2(t)

−1
2
α2x3(t)− αx2(t)− x1(t)


where α = tf − t. (2 p)

(d) Show that

c3 =
120

α3
x1(t) +

72

α2
x2(t) +

18

α
x3(t)

Hint: It can be a good idea to define new constants

c̄1 = α3c1; c̄2 = α2c2; c̄3 = αc3

when solving the above linear system of equations (2 p)

(e) Express the optimal control u(t) as a feedback from x(t). Hint: Notice that
u(t) is the same as u(s) for s = t. (2 p)
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TSRT08: Optimal Control
Solutions

20180113

1. (a) The Hamiltonian is given by

H(t, x, u, λ) = x+ u2 + λ(x+ u+ 1).

Pointwise minimization yields

0 = ∂H

∂u
(t, x, u, λ) = 2u+ λ ⇒ u∗ = −1

2λ.

The adjoint equation is given by

λ̇(t) = −λ(t)− 1, λ(T ) = 0

which is a first order linear ode with the solution

λ(t) = eT−t − 1,

and the optimal control is

u∗(t) = −1
2λ(t) = 1− eT−t

2 .

(b) Introducing x = y and u = ẏ, it holds that ẋ = u and the Hamiltonian is given by

H(t, x, u, λ) = x2 + u2 + λu.

The following equations must hold

λ̇ = −∂H
∂x

(t, x, u, λ) = −2x,

0 = ∂H

∂u
(t, x, u, λ) = 2u+ λ.

The latter yields λ̇ = −2u̇ = −2ÿ, which plugged into the first equation gives

−2ÿ = −2x = −2y ⇔ ÿ − y = 0,

which has the solution
y(t) = c1e

t + c2e
−t,

for some constants c1 and c2. The boundary constraints y(0) = 0 and y(1) = 1 yields(
1 1
e1 e−1

)(
c1
c2

)
=
(

0
1

)
,

which has the solution (
c1
c2

)
= 1
e−1 − e1

(
−1
1

)
.

Thus,
y(t) = 1

e−1 − e1 (e−t − et),

is the sought after extremal.
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2. (a) TO BE OR NOT TO BE, N = 6, L = 6.
Stage k = N + 1 = 7: J(7) = 0.
Stage k = 6:

J(6) = min
6≤j≤6

{f0(6, j) + 0} = f0(6, 6) = 64 (1)

Stage k = 5:

J(5) = min
5≤j≤6

{f0(5, j) + J(j + 1)}

= min{f0(5, 5) + J(6), f0(5, 6) + J(7)} = min{128, 1} = 1
(2)

optimum for (5,6)
Stage k = 4:

J(4) = min
4≤j≤6

{f0(4, 4) + J(5), f0(4, 5) + J(6), f0(4, 6) + J(7)}

= min{27 + 1, 0 + 64,∞} = 28
(3)

optimum for (4,4) and (5,6)
Stage k = 3:

J(3) = min
3≤j≤6

{f0(3, 3) + J(4), f0(3, 4) + J(5), f0(3, 5) + J(6), f0(3, 6) + J(7)} =

= min{64 + 28, 0 + 1,∞,∞} = 1
(4)

optimum for (3,4) and (5,6)
Stage k = 2:

J(2) = min
2≤j≤6

{f0(2, 2) + J(3), f0(2, 3) + J(4), f0(2, 4) + J(5), f0(2, 5) + J(6), f0(2, 6) + J(7)}

= min{64 + 1, 1 + 28,∞,∞,∞} = 29
(5)

optimum for (2,3), (4) and (5,6)
Stage k = 1:

J(1) = min
1≤j≤6

{f0(1, 1) + J(2), f0(1, 2) + J(3), f0(1, 3) + J(4), f0(1, 4) + J(5),

f0(1, 5) + J(6), f(1, 6) + J(7)} = min{64 + 29, 1 + 1,∞,∞,∞,∞} = 2
(6)

optimum for (1,2), (3,4) and (5,6)
The minimum overall badness,

J∗(1) = 2, (7)

achieved for the optimal partition of (1,2), (3,4), and (5,6).
(b) BE OR NOT TO BE, N = 5, L = 6.

Using the principle of optimality it can be read from (6) that the minimum overall badness,

J∗(1) = 29, (8)

is achieved for the optimal partition of (1,2), (3), and (4,5).

3. (a) • The discretization method is straightforward to apply to all problems. There exist many
good algorithms for nonlinear optimization. Drawbacks are the large number of variables and
constraints, and that the solution may not converge to the solution of the original problem.

• A shooting method is straightforward to apply to all problems, but it is crucial to find a good
initial guess of λ(0). The transition matrix may sometimes be ill conditioned when using a
shooting method, but that is a minor problem for these quite simple problems.

• A gradient method is straightforward to apply to (1) and (2), but (3) requires a slightly more
complex gradient algorithm due to the the terminal constraint. Convergence tends to be slow
for the gradient methods, but this is a minor problem for these quite simple problems.
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(b) Problem (1) is a linear-quadratic problem that is possible to solve analytically with HJBE. Use
V (t, x) = P (t)x2, where P (t) is a positive function that can be obtained by solving the Riccati
equation. The optimal feedback law is µ(t, x) = −P (t)x.

(c) Note that Problem (3) is the same problem as in exercise 1, but with an additional constraint
on the final state. Thus, since Sf is a set with just one point then there is no constraint on
λ(tf ). Thus, the shape of the control signal can be derived, but with one unknown constant. By
substituting the control signal in the dynamic model with the control law u(t) = −1/2λ(t) we
obtain a linear ODE of order one that is straightforward to solve and by using the initial and final
state constraints all constants can be found.

4. (a) The Hamiltonian is given by

H(x, u, λ) = u2 + λT (Ax+Bu)

The adjoint equations are
λ̇ = −Hx = −ATλ

with no boundary conditions. Since the Hamiltonian is strictly convex in u the minimum is
obtained when the gradient with respect to u is zero, i.e.

2u+BTλ = 0

which has the solution u = − 1
2B

Tλ. Substituting this expression into the dynamical equations
for x results in

ẋ = Ax− 1
2BB

Tλ

with boundary conitions x(t) given and x(tf ) = 0.
(b) Examining the TPBVB one realizes that the equations can be solved recursivley by integration.

One starts with the equation λ̇1(s) = 0 and take as primitive function λ1(s) = c1 for some
constant c1. Then one consider λ̇2(s) = −λ1(s), and hence one may take λ2(s) = −c1(s− t) + c2
for some constant c2. Continuation of this gives the desired result.

(c) The first three conditions immediately follows from expressions for x(s) when s is substituted
with t, since then s̄ = 0. The equations for ci, i = 1, 2, 3 immediately follow from the expressions
for x(s) when s is substituted with tf , since x(tf ) = 0, where we also make use of the three first
conditions.

(d) After the change of variables and after dividing the first equation with α and the second with
α2 the equations read− 1

12
1
4 − 1

2
− 1

48
1

12 − 1
4

− 1
240

1
48 − 1

12

c̄1
c̄2
c̄3

 =

 −x3(t)
−x3(t)− 1

αx2(t)
− 1

2x3(t)− 1
αx2(t)− 1

α2x1(t)


Several manipulations now lead to

c̄3 = 120
α2 x1(t) + 72

α
x2(t) + 18x3(t)

from which the result follows.
(e) The optimal u(t) is given by

u(t) = −1
2B

Tλ(t) = −1
2λ3(t) = −1

2c3 = −
(

60
α3x1(t) + 36

α2x2(t) + 9
α
x3(t)

)
which is a feedback from x(t).
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