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1. We are interested in computing optimal transportation routes in a circular city.
The cost for transportation per unit length is given by a function g(r) that only
depends on the radial distance r to the city center. This means that the total
cost for transportation from a point P1 to a point P2 is given by∫ P2

P1

g(r)ds

where s represents the arc length along the path of integration. In polar coordi-
nates (θ, r) the total cost reads∫ P2

P1

g(r)

√
1 + (rθ̇)2dr

where θ = θ(r), and θ̇ = dθ/dr.

(a) Formulate the problem of computing an optimal path as an optimal control
problem (2p)

(b) For the case of g(r) = α/r for some positive α show that any optimal path
satisfies the equation θ = a log r + b for some constants a and b. (5p)

(c) Show that if the initial point and the final point are at the same distance
from the origin, then the optimal path is a circle segment. You may use the
claim in (b). (3p)

2. Consider the double integrator

ẋ1 = x2

ẋ2 = u, |u| ≤ 1

with the following criterion to be minimized∫ ∞
0

|x1|dt

(a) Write down the Hamilton-Jacobi-Bellman equation for the optimal cost
V (x). (2p)

(b) Calculate the optimal control as a function of V . (2p)

(c) Show that

V = x1x2 +
x32
3

+ C(2x1 + x22)
3/2

solves the Hamilton-Jacobi-Bellman equation in the region x1 > 0, x2 > 0.
(C is a positive constant). What value does this give for u when x1 > 0,
x2 > 0? (6p)
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3. We consider a one degree of freedom robot joint with constant joint stiffness K
and damping D. The dynamics is described by

M
d2q

dt2
+D

dq

dt
+Kq = Kθ +D

dθ

dt

where q is the link position, θ is the motor position, and M is the link inertia.

(a) Show that with x1 = θ− q, x2 = q̇ and u = θ̇ the dynamics can equivalently
be written as [

ẋ1
ẋ2

]
=

[
−x2 + u

ω2
0x1 + 2ζω0(−x2 + u)

]
where ω2

0 = K/M and ζ = D/(2ω0M). (2p)

(b) We are interested in maximizing the final link velocity q̇(tf ), where the final
time tf is fixed. The control signal u is constrained such that u(t) ≤ u(t) ≤
u(t), t ∈ [0, tf ]. Form the Hamiltonian for this optimal control problem and
write down the adjoint equations. (2p)

(c) Show that the optimal control is given by

u∗(t) =


u(t), σ(t) < 0

u(t), σ(t) > 0

arbitrary, σ(t) = 0

where σ(t) = λ1(t)+2ζω0λ2(t), and where λT =
[
λ1 λ2

]
satisfies the adjoint

equations. (2p)

(d) Consider the special case of ζ = 0 which gives the switching function

σ(t) = −ω0 sin(ω(tf − t)).

Discuss how many switches there will be. (2p)

(e) Consider the special case of ζ = 1 which gives the switching function

σ(t) = ω2
0e
−ω(tf−t)

(
tf − t−

2

ω0

)
.

Discuss how many switches there will be. (2p)

4. (a) Describe advantages and disadvantages of the five different computational
algorithms that are described in the lecture notes. (5p)

(b) Solve the following problem

minimize
u(·)

−
∫ ∞
0

e−βt
√
u(t) dt

subject to ẋ(t) = αx(t)− u(t),

x(0) = x0 > 0,
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where we assume that 2β > α and x(t) > 0 for all t ≥ 0. Hint: Try the value
function V (t, x) = −e−βt

√
cx where c > 0 is a constant. Use Theorem 2 in

the formula sheet with tf =∞. (5p)
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TSRT08: Optimal Control
Solutions

2017-04-19

1. (a) By introducing the control u = θ̇, we can specify the optimal control
problem

minimize
u

∫ r2

r1

g(r)
√

1 + (r · u(r))2dr

subject to θ̇ = u

θ(r1) = θ1

θ(r2) = θ2

where r1, θ1 and r2, θ2 are the polar coordinates of the points P1 and
P2, respectively.

(b) With g(r) = α/r, the Hamiltonian is given by

H(r, θ, u, λ) = α

r

√
1 + (r · u)2 + λ · u

Further we have that

∂H

∂u
(r, θ, u, λ) = α

r · u√
1 + (r · u)2

+ λ

∂2H

∂u2 (r, θ, u, λ) = α
r

(1 + (r · u)2)3/2

Since α > 0 and r > 0 we have that ∂2H
∂u2 > 0 ∀u. Hence, H(r, θ, u, λ) is

strictly convex in u. Therefor, pointwise minimization yields

0 = ∂H

∂u
(r, θ∗(r), u∗(r), λ) = α

r · u∗(r)√
1 + (r · u∗(r))2

+ λ(r)

The adjoint equation is given by

λ̇ = −∂H
∂θ

(r, θ, u, λ) = 0

without final constraint on λ(r2) since we do have a final constraint on
θ(r2). This equation has the solution

λ(r) = c
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for some constant c and the optimal control is

α
r · u∗(r)√

1 + (r · u∗(r))2
= −c

This requires r · u∗(r) to be constant, which can be written as

ru∗(r) = a ⇒ u∗(r) = a

r

for some constant a. This gives the optimal path

θ̇ = a

r
⇒ θ = a log r + b

which we were supposed to show.
(c) Reformulate the optimal path as a function of theta

r(θ) = e
θ−b
a = BeAθ

where A = 1/a and B = e−b/a. We now require that the initial and final
point shall have the same radius r0, such that r(θ1) = r0 and r(θ2) = r0.
This gives

r0 = BeAθ1 , r0 = BeAθ2 ⇒ A = 0, B = r0

which gives
r(θ) = r0, for θ1 ≤ θ ≤ θ2

This corresponds to a path with constant radius, i.e. a circle segment.

2. (a) The Hamiltonian is given by

H(x, u, λ) , f0(x, u) + λT f(x, u)
= |x1|+ λ1x2 + λ2u

Point-wise optimization yields

µ̃(x, λ) , arg min
|u|≤1

H(x, u, λ)

= arg min
|u|≤1

{|x1|+ λ1x2 + λ2u} = −signλ2,

The Hamilton-Jacobi-Bellman equation is now given by

0 = H(x, µ̃(x, Vx), Vx).

In our case this is equivalent to

0 = |x1|+ Vx1x2 − Vx2signVx2 , (1)

(b) The optimal control is given by

u∗(t) , µ̃ (x(t), Vx (x(t))) = −sign {Vx2(x(t))}
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(c) With the proposed function V we get

Vx1 = x2 + 3C(2x1 + x2
2)1/2

Vx2 = x1 + x2
2 + 3C(2x1 + x2

2)1/2x2

In the region x1 > 0 and x2 > 0 we then also have that Vx1 > 0 and
Vx2 > 0. Inserted in (1) this gives

x1 + (x2 + 3C(2x1 + x2
2)1/2)x2 − x1 − x2

2 − 3C(2x1 + x2
2)1/2x2 = 0

Thus, in this region this solves the Hamilton-Jacobi-Bellman equation
and the corresponding optimal control will be

u∗(t) = −signVx2 = −1 (2)

3. (a) By introducing x1 = θ − q, x2 = q̇, u = θ̇ and redefining x , (x1, x2)T ,
the problem at hand can be written on standard form as

ẋ1(t) = θ̇ − q̇ = −x2 + u,

ẋ2(t) = q̈ = 1
M

(
K(θ − q) +D(θ̇ − q̇)

)
= K

M
x1 + D

M
ẋ1

By introducing ω2
0 = K/M and ζ = D/(2ω0M) we have

ẋ1 = −x2 + u,

ẋ2 = ω2
0x1 + 2ζω0(−x2 + u).

(b) Considering φ(T, x(T )) = −x1(T ) and f0(t, x, u) = 0, the Hamiltonian
is given by

H(t, x, u, λ) , f0(t, x, u) + λT f(t, x, u)
= λ1(−x2 + u) + λ2(ω2

0x1 + 2ζω0(−x2 + u)).

The adjoint equations are

λ̇1(t) = − ∂H
∂x1

= −λ2ω
2
0

λ̇2(t) = − ∂H
∂x2

= λ1 + 2ζω0λ2.

(c) Pointwise minimization yields

µ̃(t, x, λ) , arg min
u≤u≤ū

H(t, x, u, λ)

= arg min
u≤u≤ū

(λ1 + 2ζω0λ2)u

=


ū, σ < 0
u, σ > 0
ũ, σ = 0

,
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where ũ ∈ [u, ū] is arbitrary. Thus, the optimal control is expressed by

u∗(t) , µ̃(t, x(t), λ(t)) =


ū, σ(t) < 0
u, σ(t) > 0
ũ, σ(t) = 0

,

where the switching function is given by

σ(t) = λ1(t) + 2ζω0λ2(t).

(d) Since the switching function never remains at zero for finite time, the op-
timal control, u∗, always takes its minimum or maximum values period-
ically, depending on the sign of σ(t)(known as bang-bang control). The
number of times σ becomes zero, determines the number of switches,
and σ = 0 when

ω0(tf − t) = kπ, k = 0, 1, 2, ...⇒ t = tf −
kπ

ω0

The number of switches is the largest integer, k, for which

tf −
kπ

ω0
> 0⇒ k <

tfω0

π
.

(e) The switching function crosses the time axis only once at t′ = tf − 2
ω0

,
and switches sign from positive to negative. Therefore, if tf > 2

ω0
, u∗

starts from its minimum value and at t′ switches to its maximum value.
If tf ≤ 2

ω0
, there will be no switches.

4. (a) See Chapter 10 ”Computational Algorithms” in the course compendium.
(b) The Hamiltonian is given by

H(t, x, u, λ) = −e−βtu1/2 + λ(αx− u)

The pointwise minimum is determined by

0 = ∂H

∂u
H(t, x, u, λ) = −1

2e
−βtu−1/2 − λ⇒

√
u∗ = −1

2e
−βtλ−1

where λ < 0 has to be satisfied. The second derivative yields

∂2H

∂u2 H(t, x, u, λ) = 1
4e
−βtu−3/2 > 0

since u > 0. Hence the solution is a minimum. Plugging the optimal
control input u∗ into the Hamiltonian yields

H(t, x, u∗, λ) = −e−βt
(
−1

2e
−βtλ−1

)
+ λαx− λ

(
−1

2e
−βtλ−1

)2

= 1
2e
−2βtλ−1 + λαx− 1

4e
−2βtλ−1 =

= 1
4e
−2βtλ−1 + λαx
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The HJBE becomes

−Vt = 1
4e
−2βtV −1

x + Vxαx

The guess V (t, x) = −e−βt
√
cx, yields

Vt = βe−βt(cx)1/2, Vx = −1
2e
−βt(c/x)1/2

which plugged into the HJBE yields

−βe−βt(cx)1/2 = 1
4e
−2βt

(
−1

2e
−βt(c/x)1/2

)−1
+
(
−1

2e
−βt(c/x)1/2

)
αx⇔

βc1/2x1/2e−βt = 1
2c
−1/2x1/2e−βt + 1

2αc
1/2x1/2e−βt

This equation has to hold for all x and t, we thus get

βc1/2 = 1
2c
−1/2 + 1

2αc
1/2 ⇔

1 = (2β − α)c⇔

c = 1
2β − α > 0

which follows from the assumption 2β > α. Finally the optimal control
is given by

u∗ = 1
4e
−2βt (Vx)−2 = 1

4e
−2βt

(
−1

2e
−βt(c/x)1/2

)−2
= x

c
= (2β − α)x
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