Försättsblad till skriftlig

tentamen vid Linköpings universitet

(fylls i av ansvarig)					
Datum för tentamen	0.000 0.00				
Sal	KÅRH				
Tid	8-12				
Kurskod	TOTS 10				
Provkod	TENI				
Kursnamn/benämning	Datorarkitektur				
Institution	IDA				
Antal uppgifter som					
ingår i tentamen	Y				
Antal sidor på tentamen	3				
(inkl. försättsbladet)					
Jour/Kursansvarig	Enk Larsson				
Telefon under skrivtid	0709-656619				
Besöker salen ca kl.	10				
Kursadministratör	Madeleine Häger Dahlqvist 282360, madha@ida.liuSe				
(namn + tfnnr + mailadress)	282360, madha@lda.114.Je				
Tillåtna hjälpmedel					
Övrigt	10 arbetsdagar				
(exempel när resultat kan ses på	10 arbetsdagar etter tentamen				
webben, betygsgränser, visning,					
övriga salar tentan går i m.m.)					
Vilken typ av papper ska					
användas, rutigt eller linjerat					
Antal exemplar i påsen					

Linköping University
Department of Computer Science
Erik Larsson

Exam

Computer Architecture

TDTS10

August 22, 2009 - 08:00-12:00

Jour: Erik Larsson(0709-656619)

Hjälpmedel/Admitted material:

- Engelsk ordbok
- Dictionary from English to your native language

General instructions:

- This exam has 6 assignments and 3 pages, including this one.
- Read all assignments carefully and completely before you begin.
- Use a new sheet for each assignment.
- You may answer in either English or Swedish.
- Write clearly. Unreadable text will be ignored.
- Be precise in your statements. Unprecise formulations may lead to a reduction of points.
- Motivate clearly all statements and reasoning.
- Explain calculations and solution procedures.
- The assignments are not ordered according to difficulty.
- The exam is designed for 30 points. The case study and laboratory work may add on up to 15 points. The maximum is 40 points.
- Grading: U, 3, 4, 5. The preliminary threshold for passing is 22 points (including points from case study).
- For ECTS, LiU make use of: 5=A, 4=B, 3=C, and UK=Fx.

1. Operating system (5 points)

• A process may be in different states (such as running); list and explain the states in which a process can be, and explain how, when and why a process moves between states.

2. Pipelining (5 points)

• How many cycles would the following sequence of instructions take if they are executed in a 6-stage pipeline (assume one cycle per stage in the pipeline (FI-fetch instruction, DI-decode instruction, CO-calculate operand, FO-fetch operands, EI-execute instruction, WO-write operand) (2p).

Instructions ADD R1, (R2) ADD R2, R1

3. Execution (5 points)

• What would the program counter, the zero status register, R1 and R2 contain after execution of the program below?

Address	Instruction/Data
0	LOAD R2, #10
1	LOAD R1, #0
2	ADD R1,(R2)
3	ADD R1, R2
4	BR 6
5	MUL R2, R1
6	HLT
7	ADD R1, R2
8	SUB R2, #1
9	HLT
10	4
11	5
12	8

The instructions are:

LOAD=load, SUB=subtraction,
ADD=addition, BR=unconditional branch,
HLT=halt
number/data are given in decimal numbers

4. Memory system (5 points)

- For a memory system, explain what memory fragmentation is, what types of fragmentation there can be, and discuss how to address memory fragmentation.
- Explain the difference between a virtual, logic and physical address
- Discuss performance when the page table is placed in the main memory
- Discuss the relation between trashing and demand paging

5. Cache (5 points)

- Locality of reference is an important feature of programs, in the context of memory hierarchies. Explain what locality of reference means, and why it is important
- Assume a main memory of size 64 bytes and a cache memory of size 16 bytes. The cache memory is organized as direct mapping and a cache line is of size 4 bytes. Explain what happens (decoding and memory read) when the CPU makes the following memory requests: (a) read at address 000000, (b) read at address 100111, and (3) read at address 111001.

Cache line	Tag	Byte address				
		00	01	10	11	
00	00	A	В	C	D	
01	10	E	F	G	H	
10	01	I	J	K	L	
11	00	M	N	О	P	

6. I/O (5 points)

Programmed I/O is one alternative to handle I/O operations. How
does programmed I/O work? What alternatives exists (discuss
and explain)?