WGS PR,
sV L

k3

STK
c,’ -

Forsattsblad till skriftlig

tentamen vid Linkdpings universitet

(fylls i av ansvarig)

Datum for tentamen

ROOY ~OF L2

Sal KHeR

Tid T2

Kurskod ToTsS o

Provkod TENI
Kursnamn/benimning Datovariiteletu v
Institution IDA

Antal uppgifter som (

ingar i tentamen

Antal sidor pa tentamen 2

(inkl. forsittsbladet)

Jour/Kursansvarig

Enbk darsson

Telefon under skrivtid

OF0q ~ (S (149

Besoker salen ca Kkl.

1@

Kursadministrator Madeleine tlagec Daklqu (st
(namn + tfnnr + mailadress) 28 23¢0 aglels a@ (da liy.¥
Tillatna hjilpmedel

Ovrigt \O arbetsdeaar

(exempel nér resultat kan ses pé
webben, betygsgriinser, visning,
dvriga salar tentan gr i m.m.)

ellcr fontam-e

Vilken typ av papper ska
anvindas, rutigt eller linjerat

Antal exemplar i pasen

2009-05-13/5sli

Linkoping University : August 18, 2009
Department of Computer Science
FErik Larsson

Exam
Computer Architecture

TDTS10
August 22, 2009 - 08:00-12:00

Jour: Erik Larsson(0709-656619)

Hjilpmedel /Admitted material:

o Engelsk ordbok
e Dictionary from English to your native language

General instructions:

e This exam has 6 assignments and 3 pages, including this one.

e Read sll assignments carefully and completely before you begin.

o Use & new sheet for each assignment.

e You may answer in either English or Swedish.

o Write clearly. Unreadable text will be ignored.

e Be precise in your statements. Unprecise formulations may lead to a

reduction of points.

Motivate clearly all statements and reasoning.

Explain calculations and solution procedures.

The assignments are not ordered according to difficulty.

The exam is designed for 30 points. The case study and laboratory

work may add on up to 15 points. The maximum is 40 points.

e Grading: U, 3, 4, 5. The preliminary threshold for passing is 22 points
(including points from case study).

e For ECTS, LiU make use of: 5=A, 4=B, 3=C, and UK=Fx.

* & & @

CompUTER ARCHITECTURE (TDTS10) AucusT 22, 2009

1. Operating system (5 points)

o A process may be in different states (such as running); list and
explain the states in which a process can be, and explain how,
when and why a process moves between states.

2. Pipelining (5 points)

e How many cycles would the following sequence of instructions take
if they are executed in a 6-stage pipeline {assume one cycle per
stage in the pipeline (FI-fetch instruction, DI-decode instruction,
CO-calculate operand, FO-fetch operands, El-execute instruction,
WO-write operand} (2p).

Instructions
ADD Ri, (R2)
ADD R2, R1

3. Execution (5 points)

e What would the program counter, the zero status register, R1 and
R2 contain after execution of the program below?

Address Instruction/Data
0 LOAD R2, #10
i LOAD R1, #0
2 ADD R1,(R2)
3 APD R1, R2
4 BR 6

5 MUL RZ, R1

8 HLT

T ADD R1, R2

8 SUB Rz, #1

9 HLT

10 4

11 5

12 8

The instructions are:
LOAD=1cad, BUB=subtraction,
ADD=addition, BR=unconditional branch,
HLT=halt
number/data are given in decimal numbers

COMPUTER ARCHITECTURE (TDTS10) AvausT 22, 2008

4. Memory system (b points)

e For a memory system, explain what memory fragmentation is,
what types of fragmentation there can be, and discuss how to
address memory fragmentation.

e Explain the difference between a virtual, logic and physical address

e Discuss performance when the page table is placed in the main
memory

¢ Discuss the relation between trashing and demand paging
5. Cache (5 points)

e Locality of reference is an important feature of programs, in the
context of memory hierarchies. Explain what locality of reference
means, and why it is important

o Assume a main memory of size 64 bytes and a cache memory of size
16 bytes. The cache memory is organized as direct mapping and
a cache line is of size 4 bytes. Explain what happens (decoding
and memory read) when the CPU makes the following memory
requests: (a) read at address 000000, {b) read at address 100111,
and (3) read at address 111001.

Cache line | Tag | Byte address
: 00701]10]11

00 00 A |B]C|D

01 10 E|F G| H

10 ot 1 I JIK|L

11 00 M| N;O|P

6. 1/O (5 points}

e Programmed 1/0 is one alternative to handle I/O operations. How
does programmed I/O work? What slternatives exists (discuss
and explain)?

