## THE WAS DIVINED TO

# Försättsblad till skriftlig tentamen vid Linköpings universitet

(fylls i av ansvarig)

| (Tyris i av ansvarig)                     |
|-------------------------------------------|
| 2010-06-11                                |
|                                           |
| 8-12                                      |
| TDTS07                                    |
|                                           |
| System design and methodology             |
|                                           |
| IDA                                       |
| 12                                        |
|                                           |
|                                           |
| 4                                         |
| Petru Eles                                |
| 0703681396                                |
| 10                                        |
| Gunilla Mellheden, gunme@ida.liu.se, 2297 |
|                                           |
| Ordbok                                    |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |

#### LINKÖPINGS TEKNISKA HÖGSKOLA Institutionen för datavetenskap Petru Eles

#### Tentamen i kursen

#### System Design and Methodology- TDTS07

2010-06-11, kl. 8-12

Hjälpmedel:

Engelsk ordbok.

Supporting material:

English dictionary.

Poänggränser:

Maximal poäng är 30. För godkänt krävs sammanlagt 16 poäng. Points:

Maximum points: 30. In order to pass the exam you need a total of minimum 16 points.

Jourhavande lärare:

Petru Eles, tel. 281396, 0703681396

Good luck !!!

### Tentamen i kursen System Design and Methodology- TDTS07, 2010-06-11, kl. 8-12 Du kan skriva på svenska eller engelska!

1. Compare reasoning about time with synchronous FSMs and Timed Automata.

(2p)

2. Give an example and show how determinism is lost with a GALS model as opposed to a synchronous FSM.

(2p)

- 3. a) Are Petri Net models deterministic?
  - b) Consider the model in Fig 1a). Starting with the marking in the figure, which is (are) the possible next state(s) of the model? Can the state S eventually be reached? Is it guaranteed to be reached?
  - c) Consider the model in Fig. 1b). Can the state S eventually be reached? Is it guaranteed to be reached?



4. Define Kahn process networks and synchronous dataflow models.

Give an example of a Kahn process network. Show that it cannot be statically scheduled.

Adjust the example such that it becomes a synchronous dataflow model. Show a static schedule for this new model.

(3p)

5. How does a discrete event simulator work? Illustrate by a flow-graph.

(2p)

## Tentamen i kursen System Design and Methodology- TDTS07, 2010-06-11, kl. 8-12 Du kan skriva på svenska eller engelska!

| 6.  | What does it mean by an Application Specific Instruction Set Processor (ASIP)? We have discussed five dimensions of specialization for ASIPs. Which are those five? Comment on each of them.                                                                                                      | <b>)</b> ) |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 7.  | Describe a simple design flow for processor specialization. Illustrate also by a figure Comment on the design tools you need.  How does this differ from the design flow for a platform definition?  (31)                                                                                         |            |
| 8.  | Illustrate by a diagram the trade-off energy consumption vs. flexibility for ASIC, FPGA ASIP, and general-purpose processor.                                                                                                                                                                      |            |
| 9.  | What does it mean by IP (core) based design? What types of cores can you choose from Comment on each of them.                                                                                                                                                                                     |            |
| 10. | We have introduced three particular policies for shut-down with Dynamic Power Management: time-out, predictive, and stochastic. Describe the main characteristics of each Compare.                                                                                                                | 1.         |
| 11. | <ul><li>a) Formulate the scheduling problem for a set of real-time tasks. What does it mean that a task set is schedulable?</li><li>b) How does it change if energy optimisation is taken into consideration?</li><li>c) What does it mean by preemptive and non-preemptive scheduling?</li></ul> | ))         |
| 12. | Show that, if leakage is ignored, it is possible that, by over-reduction of the supply voltage the total energy consumption is increased. Use diagrams to explain.                                                                                                                                |            |