
EXAM
(Tentamen)

TDDI11

Embedded Software

2020-06-04 kl: 08-12

On-call (jour):

Ahmed Rezine: email (ahmed.rezine@liu.se), phone (013 - 28 1938).

Admitted material:

• You may access your individual notes, manuals, books, and even search the internet.
• No contacts, whether physical or virtual, are allowed during the duration of the exam

with any person, whether the person is related to the course or not, except for contacting

the examiner via email for clarifications if needed.
• Any suspected breach will be systematically reported to the disciplinary board. We

will use Urkund after you submit via Lisam (Urkund is an automatic tool to combat

plagiarism).

General instructions:

• The questions may refer to your 𝑫𝒊 digit, where 𝒊 𝒊𝒏 {𝟏, 𝟐, 𝟑}. The sequence

𝑫𝟏𝑫𝟐𝑫𝟑 corresponds to the last three digits of the “anonymous-ID” you are

assigned during the exam. For instance, if your “anonymous-ID" is A-2709 or A-

86709 then 𝐷1 is 7, 𝐷2 is 0 and 𝐷3 is 9 (all in base 10). In this case, (𝐷1 + 2) is (7

+ 2) which is 9, 𝐷1𝐷2 is 70 and 𝐷2𝐷3 is 09. Ask the examiner if this is unclear.

• The questions use ⌊ . ⌋ for the floor function and ⌈ . ⌉ for the ceil function. For

instance, ⌊1.5⌋ is 1 and ⌈1.5⌉ is 2.

⚫ The problems are not ordered according to difficulty. You are encouraged to read

all problems carefully and completely before you begin.

⚫ You may answer in either English or Swedish.
⚫ Do not take pictures of your solutions or draw them. We only accept PDF files

obtained from a text editor or a word processor. You are free to use any text editor

(examples include notepad, vim, gedit, emacs, etc) or other text-based office programs

(Microsoft Word or Open/Libre Office). We expect you to generate and to submit, via

Lisam, a single PDF with ordered answers.
⚫ Be precise in your statements and clearly motivate all statements and reasoning.

⚫ Explain calculations and solution procedures.

⚫ If in doubt about the question, write down your interpretation and assumptions.

⚫ Grading: U, 3, 4, 5. The preliminary grading thresholds for p points are: 0 ≤ p <

20: U, 20 ≤ p ≤ 30: 3, 31 ≤ p ≤ 35: 4 and 36 ≤ p ≤ 40: 5.

mailto:ahmed.rezine@liu.se

Problem 1. (13 points)

Clearly formulate your answers. Points will be withdrawn for incorrect/ambiguous

justifications:

a. Assume UART based transmission. What is a parity bit? Describe a scenario (and

explain) how this bit can be useful when transmitting the value 𝐷1 + 𝐷2 + 𝐷3. For

instance, if 𝐷1𝐷2𝐷3 is 709, then 𝐷1 + 𝐷2 + 𝐷3 is the decimal number 16.

Describe a scenario where the parity bit does not help. (3pts)

b. Give an example of an embedded system that is also a hard-real time system. Why

does it qualify to be an embedded system? What does it mean for it to be a hard-

real time system? (3pts)

c. Write a C function “int check(char c)” that takes a char “c” as input (written as the

sequence of 8 bits 𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1𝑐0to clarify the question). The input could be

the status of some peripheral. The function should return true exactly when the bit

𝑐𝑖 (with 𝑖 equal to (⌊
𝐷2

2
⌋ + 2)) is 1. For instance, if your 𝐷2 is 5 then (⌊

𝐷2

2
⌋ + 2) is

4 and your “check” method should return true exactly when 𝑐4 is 1. (2 pts)

d. Give an example of an embedded system and use it to explain what inconsistent

requirements mean and describe a pair of inconsistent requirements that might

arise when designing your system. (2 pts)

e. Assume a memory mapped display at address 0xA4000. The sequence

 {

 0x47, 0x46, 0x6f, 0x73, 0x6f, 0x7f, 0x64, 0x6c, 0x20, 0x4d,
 0x6c, 0x2b, 0x75, 0x7b, 0x63, 0x46, 0x6b, 0x42, 0x21, 0x78,
 0x2a, 0x68, 0x2a, 0x1d, 0x2a, 0x5a, 0x2a, 0x63, 0x2a, 0x1f,
 0x47, 0x46, 0x6f, 0x73, 0x6f, 0x7f, 0x64, 0x6c, 0x20, 0x4d,
 0x6c, 0x2b, 0x75, 0x7b, 0x63, 0x46, 0x6b, 0x42, 0x21, 0x78,
 0x2a, 0x68, 0x2a, 0x1d, 0x2a, 0x5a, 0x2a, 0x63, 0x2a, 0x1f,
 0x47, 0x46, 0x6f, 0x73, 0x6f, 0x7f, 0x64, 0x6c, 0x20, 0x4d,
 0x6c, 0x2b, 0x75, 0x7b, 0x63, 0x46, 0x6b, 0x42, 0x21, 0x78,
 0x2a, 0x68, 0x2a, 0x1d, 0x2a, 0x5a, 0x2a, 0x63, 0x2a, 0x1f,
 0x47, 0x46, 0x6f, 0x73, 0x6f, 0x7f, 0x64, 0x6c, 0x20, 0x4d

 }

consists of 100 bytes and is stored sequentially starting with byte 0x47 at address

0xA4000, 0x46 at address 0x4001, etc. The display has 10 rows with 5 characters on

each row. Each character is encoded with two successive bytes: the first byte is the

ASCII code of the character (the ASCII code of the first character is 0x47) and the

second byte is an encoding of the foreground and background colors of the character

(the encoding of the colors of the first character is 0x46).

1. Write a function “char* foo(int col)” that returns the address of the byte

representing the ASCII code of the character at row 𝐷1 and column col. For

instance, if your 𝐷1is 9 then foo(int col) should return the address of the

ASCII byte of the character col on row 9. (2pts)

2. What is the result of foo(⌊𝐷2/2⌋)? For instance, if your 𝐷2 is 7, then the

question is about the result of foo(3). (1pt)

Problem 2. (7 points)

Consider the code depicted in Figure 1 with the two methods

SPut and SIPut. Answer the following questions:

1. Lines 20 and 27 use “IN” and “OUT” instead of

“MOV”. Explain the difference between the two

approaches: using “MOV” versus using “IN” and

“OUT”. Describe advantages and disadvantages of

each of the two approaches. (2pts)

2. “SPut” has a loop. “SIPut” does not have a loop. Both

communicate with a peripheral. Explain what the

difference between the two approaches is and describe

advantages and disadvantages of each of the two

approaches. (3pts)

3. Line 35 uses the instruction “PUSHA” to save all

general-purpose registers onto the stack and line 57

retrieves them. Why is this performed? Suppose we

did not have line 50 (i.e. no call to another method),

would you still need to do a “PUSHA” in the

beginning and a “POPA” at the end? Explain. (2pts)

Problem 3. (7 points)

Consider a task set with three periodic tasks: task 1 with

execution time 𝐶1 = ⌈
𝐷1

2
⌉, task 2 with execution time 𝐶2 =

⌈
𝐷2

2
⌉, and task 3 with execution time 𝐶3 = ⌈

𝐷3

2
⌉. Observe the

execution times can only be in the range 1 to 5. For instance,

if your Anonymous-ID ends with 097, then 𝐶1 = 1, 𝐶2 = 5

and 𝐶3 = 4. In this problem, you will have to find values for

the periods of the tasks. The periods must be chosen among

the values {2,4,8,12,24}. Of course, the period of each task

must be larger or equal to the execution time of the task.

Indeed, tasks and periods corresponding to red cells in Table

1 are impossible to schedule because they have a utilization

that is strictly larger than 1. All three tasks are to run on the

same sequential micro-controller (i.e. single processor) using

some scheduling algorithm. Deadlines are as long as the

periods.

1. Choose periods 𝑝1, 𝑝2, 𝑝3 for tasks 1, 2 and 3

respectively, such that the utilization of the

microcontroller (assuming these are the only tasks

running) is larger than (or equal to) 70% and smaller

than (or equal to) 90%. (2pts)

2. Which task would get the highest priority if Rate

Monotonic Scheduling (RMS) is used? (1pt)
Figure 1. Code snippet for problem 2.

3. Can the tasks be scheduled using preemptive RMS? Explain using a table. The

table should state which task is running at each time tick from 1 to the least

common multiplier of 𝑝1, 𝑝2 and 𝑝3. Observe the least common multiplier is at

most 24 but may be smaller depending on your Anonymous-ID. (2pts)

4. Can the tasks be scheduled using preemptive Earliest Deadline First (EDF)?

Explain by describing, in a table stating which task is running at each tick (again

from 1 to the least common multiplier of 𝑝1, 𝑝2 and 𝑝3). (2pts)

Table 1. Utilizations of individual tasks based on their execution times C and periods T

. T

C .
2 4 8 12 24

1 0,50 0,25 0,13 0,08 0,04

2 1,00 0,50 0,25 0,17 0,08

3 1,50 0,75 0,38 0,25 0,13

4 2,00 1,00 0,50 0,33 0,17

5 2,50 1,25 0,63 0,42 0,21

Problem 4. (6 points)

The Mealy machine described in Table 2 takes sequences of 0s and 1s as input. It outputs

1 exactly when the last three inputs (including overlap) build the sequence 101. For

instance, the machine in Table 2 outputs the sequence “00101010001” when it reads

“10101011101”.

You are asked to build a Mealy machine (describe it using a similar table where 𝑠0 is the

initial state, more states may be required) that outputs 1 exactly when the last 4 inputs

build the sequence corresponding to the encoding of ((𝐷2%3) + 1) followed by

((𝐷3%3) + 1) followed by enough 0s to get to a sequence of 4 bits. Table 3 gives

examples of binary sequences for several combinations of D2 and D3.

Table 2. Mealy machine outputs 1 when the last three inputs have been the sequence 101.

 in: 0 in: 1

𝒔𝟎 (initial) 𝒐𝒖𝒕: 𝟎 / 𝒈𝒐𝒕𝒐: 𝒔𝟎 𝒐𝒖𝒕: 𝟎/ 𝒈𝒐𝒕𝒐: 𝒔𝟏

𝒔𝟏 𝒐𝒖𝒕: 𝟎/ 𝒈𝒐𝒕𝒐: 𝒔𝟐 𝒐𝒖𝒕: 𝟎/ 𝒈𝒐𝒕𝒐: 𝒔𝟏

𝒔𝟐 𝒐𝒖𝒕: 𝟎/ 𝒈𝒐𝒕𝒐: 𝒔𝟎 𝒐𝒖𝒕: 𝟏/ 𝒈𝒐𝒕𝒐: 𝒔𝟑

𝒔𝟑 𝒐𝒖𝒕: 𝟎/ 𝒈𝒐𝒕𝒐: 𝒔𝟐 𝒐𝒖𝒕: 𝟎/ 𝒈𝒐𝒕𝒐: 𝒔𝟏

Table 3. Obtaining the 4 bits sequence from 𝐷2 𝑎𝑛𝑑 𝐷3

𝑫𝟐 𝑫𝟑 ((𝐷2%3) + 1) then ((𝐷3%3) + 1) Resulting 4 bits sequence

𝐷2 = 0 𝐷3 = 1 1 followed by 2 1 10 0

𝐷2 = 3 𝐷3 = 9 1 followed by 1 1 1 00

𝐷2 = 4 𝐷3 = 6 2 followed by 1 10 1 0

𝐷2 = 7 𝐷3 = 2 2 followed by 3 10 11

Problem 5. (7 points)

As it is often the case, newly pushed stack elements get smaller addresses. A function

with one argument has just been called. The stack looks as follows:

byte | address

 | 0x3fffffdc
 | 0x3fffffdd
 | 0x3fffffde
 | 0x3fffffdf
 | 0x3fffffe0
 | 0x3fffffe1
 | 0x3fffffe2
 | 0x3fffffe3
 | 0x3fffffe4
 | 0x3fffffe5
 | 0x3fffffe6
 | 0x3fffffe7
 | 0x3fffffe8 <-- esp
 | 0x3fffffe9
 | 0x3fffffea
 | 0x3fffffeb
 | 0x3fffffec <-- (X)
 | 0x3fffffed
 | 0x3fffffee
 | 0x3fffffef
 | 0x3ffffff0 <-- (Y)
 | 0x3ffffff1
 | 0x3ffffff2
 | 0x3ffffff3
 | 0x3ffffff4 <-- (Z)
 | 0x3ffffff5
 | 0x3ffffff6
 | 0x3ffffff7
 | 0x3ffffff8 <-- ebp
 | 0x3ffffff9
 | 0x3ffffffa
 | 0x3ffffffb

Answer the following questions:

1. The register esp contains the value: “0x3fffffe8”. Explain what role is
played by the 4 bytes stored at the addresses “0x3fffffe8,
0x3fffffe9, 0x3fffffea, 0x3fffffeb”. Why are they stored on
the stack? (2pts)

2. The two first instructions of the function are:

 push ebp

 mov ebp, esp

How do these two instructions update the stack and esp? How come these two

instructions are often used at the beginning of functions? (2pts)

3. Explain Endianness. Suppose the argument to the function is the 32 bits integer

corresponding to the sequence (in decreasing order of significance) of 4 bytes

with the most significant byte containing the value 2 (written 0x2), followed by a

byte containing the value 𝐷2 (if your 𝐷2 is 9 then the second byte is 0x9), then a

byte containing the value 3 and finally (the least significant byte) containing the

value 𝐷3. Give the address in the stack of each one of these 4 bytes (3pts.)

