TDDIi1.2010-05-25.08-12

Forsattsblad till skriftlig tentamen
vid Linképings Universitet

Cover page for written exam at Linkdping University

Datum for tentamen 2010-05-25
Date of exam

Sal VALMAT
Room

Tid 08:00-12:00
Time .
Kurskod TDDH1
Course code

Provkod TEN1

LADOK code

Kursnamn/benamning

Programmering av inbyggda system

Course name Embedded software
Institution IDA

Deparirnent

Antal uppgifter som ingér i tentamen | 6

Nurmber of assignments 6 assignments for a total of 40 points
Antal sidor pa tentamen 4

(inkl. forsattsbladet)

Number of pages including cover

Jour/Kursansvarig Klas Arvidsson
Respensible/Examiner kias.arvidsson@liu.se
Telefon under skrivtid 013-28 21 46
Phone during exam

Besoker salen cakl. Start + 1h

Time of exam visit

Kuradministrator

Gunilla Mellheden

Course administrator {12 - 28 22 97, 070 - 597 90 44, gunifia. mefheden@liu.se

Tillatna hjalpmedel Ordlista och enkel minirdknare {(+,-,*/)

Allowed aids Dictionary and simple pocket calcuiator {+-,*))

f)vrigt Preliminary graded: U< 50% <3< 67% <4<84% <3

Other information

Grades may be raised or lowered based on overall impression.
Precise, explained and clearly motivated assumptions, state-
ments and reasoning raise the impression and may triple the
points. Solve at most one assignment per sheet.

Results available within 10 working days.

Read all assignments and estimate how many points you can
get before you start,

Typ av papper Rutigt, linjerat eller blankt
Paper to use No preference
Antal anmilda 35

Number of exams




TDDI11.2010-05-25.08-12

1. (8p)

a) Define an embedded system.
What makes a system embedded? Explain each term you use. (4p)

b) When you design an embedded system certain technology can provide (technical or
economical) benefits or drawbacks. List four of the mefrics (technical or economical)
commonly used to compare design- and IC-technology? No motivation required. (2p)

¢) Given the task to design a system where the four metrics you gave in the previous question
is very important, select one design technology (special-purpose, general-purpose, or
application-specific) and one IC-technology (full-custom, PLD, or semi-custom) that
provide a good compromise between them. Motivate. Motivate. Motivate. (2p)

2. (3p)
Describe the workings and organization of a foreground-background system. An explained
picture is appreciated.

3. (3p)
N is an integer variable in the range 0-7. D is an one byte variable. Provide C-code (or
comparable pseudo-code) to do each of the following tasks:

a) Show how to retrieve the value of the n:th bit in D. All bits must remain unchanged. (1p)
b) Set the n:th bit of D to logical one ‘1°. All other bits must remain unchanged. (1p)
¢) Reset the n:th bit of b to logical zero ‘0°. All other bits must remain unchanged. (1p)

4. (6p)
A 4-bit CPU needs to multiply two 8-bit integers to produce a 16-bit result. But only 4-bit
multiplication with 8-bit result is available, as well as 4-bit addition with or without carry.

a) Show mathematically or graphically (no code) how to perform the multiplication on the
CPU. It should be clear which (4-bit) multiplications and additions that are done. (4p)

b) Addition may produce a carry (overflow). Adding the carry (+1) may in turn produce a new
carry (overflow). But certain of the additions with one (+1) you do in a) will never overflow.
Which and why? (2p)

5. (16p)
The following text describe a scenario that will be used for several theory and code assignments.
Italic words outline keywords you are expected to know extra well from the course.

A design team consisting of you, you, and you should implement a burglar alarm controller. The
figure on next page describe the system devices connected to a 8-bit general-purpose processor
with four interrupt pins. Veciored interrupts is used. Each of the device output signals top_h,

keypress and alarm is connected to an interrupt pin. The last interrupt pin is left unconnected.

Each of the device registers count_1, count_h, and keycode is memory mapped to the system
bus. They use addresses COUNT_L, COUNT_H and KEYCODE respectively. A small RoM memory is
addressed from o to RoM_END, and a small Ram memory is addresses from RAM _START to
raM_END. The 8-bit counter (timer) clock input is connected to a 10 kHz clock (100 micro-
seconds per tick).

The system have three write-only outputs. They share a port named DSP on the system, where
(when writing to the port) bit 0 control the diode, bit 4 control the sound and bit 5 the “police”
signal. The remaining 5 bits is not defined and should be kept low (0).



TDDI11.2010-05-25.08-12

10 kHz clocky, clock._ 8-bit up counter - count_1
top_ 1

[-—P- 8-bit up coumter P count_h
top_h

[°] [ FPR 20% ! Red diode
E keypress

P
8-bit CPU ;
@ 7~ W keycode ! Sound waming

alarm police

Alarm sengors Signals police

The following specification is given:
+ The alarm system is turned on and off by entering a 4 digit code followed by a star (*).

+  After three consecutive failed attempts at the code the system should refuse further attempts
on the code. Only a service technician can unlock it again (by resetting the software).

+  Any partially entered codes should be reset when the keyboard have been inactive for 30
seconds. This is to avoid that partially entered codes mess up the next atiempt to activate or
inactivate the alarm system. :

+ The red diode should be alight when the alarm is active and off when the alarm is inactive.

The alarm signal goes high if any sensor on doors or windows is activated, it means someone
likely entered the surveillance area. The system should now activate the sound warning, and if
the correct code is not provided within 30 seconds the system should send a signal to the
“police”. If the correct code is entered within 30 seconds the system will be inactivated and the
diode turned off. The system is turned on by entering the code again.

You plan to implement the burglar alarm controller with simple interrupt handlers that trigger
the execution of a finite state machine. The FSM is only called when an handler change an input
signal used by the FSM. The FSM will in turn activate the system outputs as needed.

If vou believe you need to know details not specified in the assignment you may assume them as

you like. But clearly state all assumptions you do.

a) Explain the meaning of a memory map and draw an example how it will look like with the
given system. Use symbolic hames when specific addresses or sizes are unknown. (1p)

b) Explain the meaning of a interrupt service vector. Draw an example of how you arrange it in
the given system. Use symbolic names when specific addresses are unknown. (2p)

c¢) State the difference between port-based and memory-mapped 1/0. What is the difference
from assembly point of view? (1p)

d) Write the functions timer start, timer stop and inferrupt handier for the two cascaded
(time) counters. Use precise psendo-code, C-code, or x86-like assembly as you like. Your
code should call the function mair_fem() 30 seconds after the last call to timer start,
unless timer stop is called before 30 seconds elapsed. You may use global variables. (5p)



TDDI11.2010-05-25.08-12

¢) Use bit-manipulation to implement functions a programmer can call in a simple way in order
to gef and set each of the three write-only output signals (on the pse port). (2p)

f) Create a finite state machine (FSM) graph describing the main system functionality. You may
assume the keyboard subsystem provide the two “signals” tripiefail and correctpin.
You can also assume existence of the output “signal” timerstart and the input timeout
from the timer subsystem. Make sure to specify the value on afl four output signals (diode,
sound, police, timer_start)in each state, and consider all events on the four input signals
(triplefail, correctpin, timeout, alarm) for state changes. Events you do not specify
are assumed NOT to change state. It is thus enough to specify state-changing transitions. (5p)

6. (4p)

A programmer have three implementations of a max fumction. They are outlined below with
names in bold text. Discuss how each implementation affect correctness, performance, and
code size. State the technical reason why each solution is good or bad. Which of the given
solutions is best to use? How can it be improved?

/* this structure will ocecupy the size of 129 integers */
struct big |

int hash; /* this is used for comparisions */

int bigli128]; /* a lot of atored data */

}i
#define MACRO MAX(a, b} ((({(a).hash > (b)}.hash) ? {a) : (b))

struct big* max(struct bhig* a, struct big* b) {
if {a->hash > b->hash)
return a;
else
return b;

}

inline struct big inline max{struct big a, struct big b} {
if (a.hagh > b.hash)
return a;
else
return b;

}

/* two ways to generate a random big variable */
struct big get_random() { ... };

struct big* alloc_random{) { ... };

int wmain ()

{

/* the three implementations in use */

/* how the macro would be used */
struct big maxi = MACRO MAX (get random(}, get zandom()};

/* how the normal functicn would be used #%/
struct big* maxi = max(alloc_random(), alloc_random(});

/* how the inline function would be used */
struct big maxi = inline max{get_random(), get random()):



