
TDDE09 Natural Language Processing (2018)

Exam 2018-03-12

Marco Kuhlmann

This exam consists of three parts:

1. Part A consists of 5 items, each worth 3 points. These items test your under-
standing of the basic algorithms that are covered in the course. They require
only compact answers, such as a short text, calculation, or diagram.

Collected wildcards are valid for this part of the exam. The numbering of the
questions corresponds to the numbering of the wildcards.

2. Part B consists of 3 items, each worth 6 points. These items test your under-
standing of the more advanced algorithms that are covered in the course. They
require detailed and coherent answers with correct terminology.

3. Part C consists of 1 item worth 9 points. This item tests your understanding
of algorithms that have not been explicitly covered in the course. This item
requires a detailed and coherent answer with correct terminology.

Grade requirements: For grade 3, you need at least 12 points in Part A (some of
whichmay come fromwildcards). For grade 4, you additionally need at least 14 points
in Part B. For grade 5, you additionally need at least 7 points in Part C.

Note that surplus points in one part do not raise your score in another part.

Good luck!

Page 1 of 9

Part A

01 Text classification (3 points)

a) Complete the learning algorithm for the multi-class perceptron:

for each class 𝑐 do
𝒘𝑐 ← 𝟎

for each epoch do
for each training example (𝒙, 𝑦) do

…

b) Complete the decision rule for the Naive Bayes classifier under the assumption
that the classifier uses log probabilities. Explain your notation.

̂𝑐 = argmax
𝑐∈𝐶
…

c) A certain Naive Bayes classifier has a vocabulary consisting of 48,359 unique
words. Training the classifier on a collection of movie reviews gave

#(pokemon, pos) = 0 #(•, pos) = 712480

#(pokemon, neg) = 20 #(•, neg) = 636767

where #(𝑤, 𝑐) denotes the number of occurrences of the word 𝑤 in documents
with class 𝑐, and #(•, 𝑐) denotes the total number of tokens in documents with
class 𝑐. Estimate the following probabilities using maximum likelihood esti-
mation with add-one smoothing. Answer with fractions containing concrete
numbers. You do not have to simplify the fractions.

i. 𝑃(pokemon | pos)

ii. 𝑃(pokemon | neg)

Page 2 of 9

02 Languagemodelling (3 points)

TheCorpus of Contemporary American English (COCA) is the largest freely-available
corpus of English, containing approximately 560 million tokens. In this corpus we
have the following counts of unigrams and bigrams:

snow white white snow purple purple snow

38,186 256,091 122 11,218 0

a) Estimate the following probabilities using maximum likelihood estimation
without smoothing. Answer with fractions containing concrete numbers. You
do not have to simplify the fractions.

i. 𝑃(snow)

ii. 𝑃(snow | purple)

b) Estimate the following probabilities using absolute discounting with 𝑑 = 0.1.
Assume that the vocabulary consists of 1,254,193 unique words, that each word
from the vocabulary is observed at least once, and that the number of unique
words observed after the word purple is 2,462. Answer with fractions containing
concrete numbers. You do not have to simplify the fractions.

i. 𝑃(snow)

ii. 𝑃(snow | purple)

c) We use maximum likelihood estimation with add-𝑘 smoothing to train two
trigram models on the COCA corpus: model A with 𝑘 = 0.1, model B with
𝑘 = 0.01. We compute the entropy of both models on the training data. Which
model has the higher entropy, and why? Anwer with a short text.

Page 3 of 9

03 Part-of-speech tagging (3 points)

The following matrices specify a hidden Markov model in terms of costs (negative
log probabilities). The marked cell gives the transition cost from BOS to AB.

AB PN PP VB EOS

BOS 11 10 12 11 25

AB 11 11 11 10 14

PN 11 12 12 10 16

PP 13 11 12 14 18

VB 11 10 10 13 15

she got up

AB 25 25 14

PN 13 25 25

PP 25 25 13

VB 25 14 19

When using the Viterbi algorithm to calculate the least expensive (most probable) tag
sequence for the sentence ‘she got up’ according to this model, we get the following
matrix. Note that the matrix is missing three values (marked cells).

she got up

BOS 0

AB A 59 72

PN 23 60 82

PP 37 B 70

VB 36 47 78

EOS C

a) Calculate the missing values.

b) Starting in cell C, list the backpointers for thematrix and state the least expensive
(most probable) tag sequence for the sentence.

c) State the runtime complexity of theViterbi algorithm as a function of the number
of tags in the model,𝑚, and the number of words in the sentence, 𝑛. Use Big O
notation. Provide a short explanation of your analysis.

Page 4 of 9

04 Syntactic analysis (3 points)

a) Draw all non-projective dependency trees for the sentence ‘1 2 3’ in which the
artificial root vertex 0 has exactly one child.

b) State a sequence of transitions that make an arc-standard parser produce the
following dependency tree:

0 1 2 3 4 5

c) Define the concepts soundness and completeness for the arc-standard transition
system. Recall that these concepts relate transition sequences with projective
dependency trees.

05 Semantic analysis (3 points)

Consider the following co-occurrence matrix over the six-word vocabulary coffee, tea,
beans, bubble, cocoa, taxi. Rows correspond to target words, columns correspond to
context words. All counts that are not explicitly given are zero.

beans bubble cocoa taxi

coffee 35 0 11 0
tea 1 17 4 0

a) Read off the following values from the co-occurrence matrix:

#(tea, bubble) #(tea) #(bubble)

b) List all target word–context word pairs (𝑤, 𝑐) whose positive pointwise mutual
information is (strictly) greater than zero.

c) Explain why the cosine similarity of two word vectors derived from a PPMI
matrix is never negative. Answer with a short text.

Page 5 of 9

Part B

06 Levenshtein distance (6 points)

The following matrix shows the values computed by the Wagner–Fischer algorithm
for finding the Levenshtein distance between the two words student and teacher. Note
that the matrix is missing a value (marked cell).

t 7 6 5 5 5 6 6 7

n 6 5 4 4 5 5 6 6

e 5 4 3 4 4 5 5 6

d 4 3 3 4 5 6 7

u 3 2 2 3 4 5 6 7

t 2 1 2 3 4 5 6 7

s 1 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

t e a c h e r

a) Define the concept of the Levenshtein distance between two words. The defini-
tion should be understandable even to readers who have not taken this course.

b) Calculate the value for the marked cell. Explain. Show that you have understood
the Wagner–Fischer algorithm.

c) It is much more likely for a user to mistype the word student as stusent than
as stulent; this is because the keys for the letters d and s are much closer to
each other on the keyboard than the keys for the letters d and l. Explain how
the Wagner–Fischer algorithm could be adapted to take this information into
account.

Page 6 of 9

07 Eisner algorithm (6 points)

Here is incomplete pseudocode for the Eisner algorithm:

for 𝑖 in [0,… , 𝑛]:
// two lines missing

for 𝑘 in [1,… , 𝑛]:
for 𝑖 in [𝑘 − 1,… , 0]:
𝑇4[𝑖][𝑘] = max𝑖≤𝑗<𝑘 (𝑇2[𝑖][𝑗] + 𝑇1[𝑗 + 1][𝑘] + 𝐴[𝑖][𝑘])
// three lines missing

The table 𝐴 holds the arc-specific scores. The tables 𝑇𝑡 hold values from the set
ℝ ∪ {−∞} and correspond to the four different types of subproblems:

𝑖 𝑘
type 1

𝑖 𝑘
type 2

𝑖 𝑘
type 3

𝑖 𝑘
type 4

These tables are initialised with the value −∞.

a) Complete the missing lines.

b) State the runtime complexity of the Eisner algorithm as a function of the number
of words in the sentence. Use Big O notation. Explain how the Eisner algorithm
improves over the Collins algorithm in terms of runtime. Provide a concrete
example that illustrates the difference between the two algorithms.

c) The Eisner algorithm is typically used for arc-factored parsing. Under this
model, the score of a candidate dependency tree 𝑦 for a (part-of-speech-tagged)
sentence 𝑥 is defined as the sum of the scores of the arcs of the tree, and the score
of an arc ℎ → 𝑑 is defined as the dot product of a feature vector 𝜙(𝑥, ℎ → 𝑑)
and a weight vector𝒘. Give some examples of features that may be useful in this
context, and explain how the weight vector can be learned using the structured
perceptron.

Page 7 of 9

08 word2vec (6 points)

Google’s word2vec implements two separate algorithms for trainingword embeddings:
continuous bag-of-words and skip-gram. Both algorithms obtain word embeddings as
‘side products’ of a binary prediction task.

a) Explain the architecture of the skip-gram model in your own words. Refer to
the relevant slide from the lecture, reproduced below.

Skip-gram

!(observed? | "; #1, #2)

dot product

#1

sigmoid

dot product

" #2

sigmoid

product

b) To train a binary classifier, one needs both positive and negative instances.
Explain how this data is obtained for the skip-gram model.

c) Levy and Goldberg (2014) showed a close connection between the skip-gram
model and the method of obtaining word embeddings from a co-occurrence
matrix that was covered in the course. Explain this connection in your own
words. Why would you prefer the skip-gram model over the matrix approach?

Page 8 of 9

Part C

09 Odds and ends of dependency parsing (9 points)

For a) and b), consider dependency trees without an artificial root vertex, that is, trees
where the root vertex may take any position between 1 and 𝑛.

a) Every projective dependency tree can be constructed by some sequence of
transitions in the arc-standard system, but this sequence is not necessarily
unique – one and the same tree may be constructed in several different ways.

i. Provide an example that illustrates this point.

ii. The number of projective dependency trees on 𝑛 vertices is given by the in-
teger sequence 1, 2, 7, 30, 143, … How many different transition sequences
are there for projective dependency trees on 𝑛 vertices, for 1 ≤ 𝑛 ≤ 5?

b) The arc-hybrid system has the same configurations and the same initialisation
and termination conditions as the arc-standard system, but uses a different
LEFT transition. Let us denote a configuration as 𝑐 = (𝜎, 𝛽, 𝐴), where 𝜎 is the
stack, 𝛽 is the buffer, and 𝐴 is the set of already constructed dependency arcs.
Then the three transitions of the arc-hybrid system can be defined as follows:

(𝜎, 𝑏|𝛽, 𝐴) → (𝜎|𝑏, 𝛽, 𝐴) SHIFT

(𝜎|𝑠1|𝑠0, 𝛽, 𝐴) → (𝜎|𝑠1, 𝛽, 𝐴 ∪ {(𝑠1, 𝑠0)}) RIGHT

(𝜎|𝑠, 𝑏|𝛽, 𝐴) → (𝜎, 𝑏|𝛽, 𝐴 ∪ {(𝑏, 𝑠)}) LEFT

i. State a sequence of transitions that make an arc-hybrid parser produce the
dependency tree from item 04 b).

ii. How many transitions does an arc-hybrid parser make when processing a
sentence with 𝑛 words? State your answer as a function of 𝑛.

c) The Eisner algorithm can be simplified by replacing subproblems of type 3 and
subproblems of type 4 with one new type of subproblem, which we may refer to
as type 5. To compute the score of subproblems of this type, we combine two
‘triangles’ without charging the score for an arc:

𝑇5[𝑖][𝑘] = max𝑖≤𝑗<𝑘 (𝑇2[𝑖][𝑗] + 𝑇1[𝑗 + 1][𝑘])

How do you have to modify the other rules of the Eisner algorithm such that
the modified algorithm becomes equivalent to the original one? Argue for the
correctness of the modified algorithm.

Page 9 of 9

