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Computer Exam - Bayesian Learning (732A91/TDDE07), 6 hp

Time: 8-12 AM

Allowable material: - The allowed material in the folder given_files in the exam system.
- Calculator with erased memory.

Teacher: Mattias Villani. Phone: 070− 0895205 and through the Communication client.

Exam scores: Maximum number of credits on the exam: 40.
Maximum number of credits on each exam question: 10.

Grades (732A91): A: 36 points
B: 32 points
C: 24 points
D: 20 points
E: 16 points
F: <16 points

Grades (TDDE07): 5: 34 points
4: 26 points
3: 18 points
U: <18 points

INSTRUCTIONS:
When asked to give a solution on Paper, give that answer on physical papers supplied with the exam.
Each submitted sheet of paper should be marked with your Client ID from the Communication Client
The client ID is the code in the red dashed rectangle in figure below.
All other answers should be submitted in a single PDF file using the Communication Client
Submission starts by clicking the button in the green solid rectangle in figure below.
The submitted PDF file should be named BayesExam.pdf
Questions can be asked through the Communication client (blue dotted rectangle in figure below).
Full credit requires clear and well motivated answers.
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1. Bayesian inference for the rice distribution

A commonly occuring distribution for positive data is the Rice distribution, which we denote by
Rice(θ, ψ). The PDF for a Rice distribution is of the form

p(x|θ, ψ) =
x

ψ
exp

(
−
(
x2 + θ2

)
2ψ

)
· I0
(
xθ

ψ

)
for x > 0.

where θ ≥ 0 is the location parameter and ψ > 0 is related to the variance. I0(·) is the modified Bessel
function of the first kind and order zero, which is implemented in R as BesselI. We will assume for
simplicity that ψ = 1.

(a) Write a function in R that computes the log posterior distribution of θ based on iid observations
x = (x1, ..., xn) from Rice(θ, ψ = 1). Use that function to plot the posterior distribution of θ for
the n = 10 observations in the data vector riceData in the supplied file ExamData.R.

(b) Use numerical optimization to obtain a normal approximation of the posterior distribution of θ
based on the data in riceData. Use the lines command in R to plot this approximate posterior
in the same graph as the posterior obtained in 1a. [Hints: use the argument lower in optim, and
method=c("L-BFGS-B")]. Is the approximation accurate?

(c) Explain on Paper how the predictive distribution for a new observation xn+1 is computed by
integration. You don’t need to actually compute the integral, just give a general formula for the
predictive distribution. Now, compute the predictive distribution for a new observation xn+1 by
simulation. You can use the normal approximation of the posterior from 1b). A simulator (rRice)
for the Rice distribution is provided in the file ExamData.R.

2. Modeling count data

The data set bids which is loaded by the code in ExamData.R contains data on the number of bids in
1000 eBay auctions for collectors coins. Let x1, ..., xn, for n = 1000, denote the data points.

(a) Assume the Poisson model x1, ..., xn|θ
iid∼ Pois(θ) for the data, and use the prior θ ∼ Gamma(1, 1).

Compute the posterior distribution for θ and plot it.

(b) Use graphical methods to investigate if the Poisson model fits the data well.

(c) Use the supplied function GibbsMixPois.R in the file ExamData.R to do Gibbs sampling for a
mixture of Poissons model

p(x) =

K∑
k=1

wk · Pois(x|θk),

where w1, ..., wK are the weights (probabilities) of the mixture components (sometimes also called
denoted π1, ..., πK). Pois(x|θk) is here used as a shorthand for the probability function (density for
a discrete variables) of a Poisson distribution with mean θk in the kth mixture component. Use
the same θ ∼ Gamma(1, 1) prior for all the K components, and a uniform prior on the weights
w1, ..., wK . Estimate the mixture of Poissons both with K = 2 and K = 3. Use nIter=500 draws,
and no burn-in.

(d) Use graphical methods to investigate if the mixture of Poissons with K = 2 fits the data well. Note
that GibbsMixPois.R returns the posterior mean of the mixture density (GibbsResults$mixDensMean).
Is K = 2 enough, or would you recommend K = 3?

(e) The number of mixture components, K, is usually unknown. Discuss on Paper how a Bayesian
could do inference for K. You do not need to compute anything here, just discuss the principles.
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3. Regression

BayesLinReg.R in the file ExamData.R samples from the joint posterior of β and σ2 in the Gaussian
linear regression with conjugate prior

β|σ2 ∼ N
(
µ0, σ

2Ω−1
0

)
σ2 ∼ Inv−χ2(ν0, σ

2
0).

(a) The file cars which is loaded by the code in ExamData.R contains data on 32 cars. For each car we
have observations on how many miles that car can travel on a gallon of gasoline (mpg), the weight
of the car (weight) and two dummy variables that indicate if the car’s engine has four cylinders
(sixcyl=0 and eightcyl=0), six cylinders (sixcyl=1 and eightcyl=0) or eigth cylinders (sixcyl=0
and eightcyl=1). The dataframe also contains a column intercept with ones to get an intercept
in the model. Now, use BayesLinReg.R to sample from the joint posterior distribution in the
Gaussian linear regression

mpg = β0 + β1 · weight + β2 · sixcyl + β3 · eightcyl + ε, ε ∼ N(0, σ2).

Analyze the dataset by simulating 1000 draws from the joint posterior. Use the prior with µ0 =
(0, 0, 0, 0), Ω0 = 0.01 · I4, ν0 = 1 and σ2

0 = 36 (which is the data variance).

i. Plot the marginal distributions of each parameter.
ii. Compute point estimates for each regression coefficient assuming the linear loss function

L(βk, a) = |βk − a| , where βk is the kth regression coefficient.
iii. Construct 95% equal tail probability intervals for each parameter and interpret them.

(b) Investigate if the effect on mpg is different in cars with six cylinders compared to cars with 8
cylinders.

(c) Compute by simulation the predictive distribution for a new car 4 cylinders and weight = 3.5.

4. Geometric data and decisions

Let x1, ..., xn|θ
iid∼ Geometric(θ). The Geometric distribution has probability function

p(x|θ) = (1− θ)xθ, for x = 0, 1, 2, ...,

and zero otherwise.

(a) Derive the posterior distribution p(θ|x1, ..., xn) on Paper using the conjugate Beta(α, β) prior.

(b) Show on Paper that the predictive distribution for a new observation xn+1 is of the form

p(xn+1|x1, ..., xn) ∝
Γ(xn+1 +

∑n
i=1xi + β)

Γ(xn+1 +
∑n

i=1xi + n+ α+ β + 1)
.

(c) Your favorite sports team has had the following result in its first n = 10 games of the season
(W=won, L=lost): W,L,L,W,W,L,L, L,W,W . Assume that the games are independent and
that the team has the same chance of winning in every game. Your local bookie has introduced a
new game where you win 2k − 1 dollars if your team loses the k subsequent games and then wins
the (k + 1)th game. The game costs $2 dollars to play. Should you play it? Use a uniform prior
wherever needed. [Hint: one way to solve this problem uses the results from 4b) above.]

Good luck!

Mattias
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