
Tentamen i TDDD82 Säkra mobila system
(Systemprogramvara)

2019-06-13

• Inga hjälpmedel är tillåtna.

• Kom ihåg att svaren på samtliga uppgifter måste MOTIVERAS, och att
motiveringarna skall vara uppställda på ett sådant sätt att det går att följa
hur Du tänkt. OMOTIVERADE SVAR GER 0 POÄNG OM INGET AN-
NAT SÄGS.

• Ansvarig: Mikael Asplund (nåbar på tel. 0700-895827).

• Maxpoäng är 30 poäng. För betyg 3 krävs minst 15 poäng, för betyg 4
krävs 20 poäng och för betyg 5 krävs 25 poäng.

Lycka till!!!

1



1. Synchronization (8p)
Consider a shared stack of positive integers, to be implemented as a shared
array of sufficiently large size and a shared stack pointer. The stack opera-
tions push and pop can be called concurrently by multiple threads. When
the stack is found to be empty, operation pop should return an error code
(−1).

(a) (2p)Write (unprotected) code for the stack initialization and for the opera-
tions push and pop. (Use C, Java or pseudocode.)

(b) (2p)Describe a contrived scenario with two threads where the concurrent
execution of these unprotected operations leads to an unexpected re-
sult (i.e., a race condition).
Identify precisely the variables and statements that could potentially be
involved in any race condition (that is, describe the critical section(s)).

(c) (2p)You are given a single-processor system where multi-tasking is imple-
mented by a preemptive scheduling algorithm, and where an atomic
test-and-set operation is available. Here, there exist actually two diffe-
rent hardware-supported mechanisms to protect critical sections. Na-
me and explain these two variants, and show for each case how your
code of part (a) is to be modified to protect its critical section(s) against
race conditions.

(d) (2p)Write a monitor solution for the shared stack (based on your code abo-
ve). Use pseudocode notation with appropriate keywords to identify
the monitor components, and explain your code. (2p)

2. Processes (7p)

(a) (3p)Define the terms process, kernel-level thread and user-level thread, and ex-
plain the differences between them.

(b) (4p)Two main methods for inter-process communication in a computer are
shared memory and message passing.
For each of them, give a short explanation of how it works and how the
operating system is involved, i.e., which important system calls are to
be used and what they do.
Which of the two methods is likely to have less overhead if two proces-
ses communicate frequently with each other, and why?

Page 2



3. Deadlocks (5p)
Consider the following resource allocation problem in a system with 3 re-
sources (R1-R3), and 4 processes (P1-P4). The table indicates the currently
allocated resources and in parenthesis the maximum possible demand.

R1 R2 R3
P1 0 (7) 2 (5) 3 (4)
P2 1 (4) 2 (4) 2 (2)
P3 1 (6) 0 (4) 3 (7)
P4 1 (1) 0 (3) 0 (1)

The currently available resources are: [5, 3, 1]. Use Banker’s algorithm to
determine if the request [1, 2, 0] from Process P2 should be granted.

4. Quality of Service (5p)

(a) (2p)Applications can have varying QoS requirements. Explain what it me-
ans if an application is tolerant or intolerant, and give one example of
each type of application.

(b) (3p)Describe the main parameters of the token bucket traffic shaping met-
hod.

5. Distributed systems (5p)
Consider the three timelines for nodes P1, P2 and P3 in the figure below. The
arrows between the lines indicate messages as they are sent and received by
the respective nodes.

a b
P1

c d e f g
P2

h i j
P3

Page 3



(a) (2p)Use Lamport’s logical clock algorithm to set timestamps for the events
a-j.

(b) (3p)Let C(e) denote the Lamport clock for event e. For each bullet point
below, either identify a pair of events (from events a-j) that match the
requirements, or explain why they do not exist.

• e1 → e2 and C(e1) < C(e2)

• e1 → e2 and C(e1) > C(e2)

• e1 9 e2 and C(e1) < C(e2)

6. Dependability (5p)
Use the terminology from IFIP Working Group 10.4 to analyse the fault-
error-failure chain in the example below (The Evening Herald, May 30 2019).
Classify the fault as permanent/transient/intermittent.

Computer glitch blamed for chaos on commuter trains
A software upgrade is thought to have caused a signalling fault
that affected around 20,000 rail commuters.
Many people were left stranded and waiting for information on
Tuesday morning after first hearing about the problem on the ra-
dio.
And although the matter has now been resolved, Irish Rail said it
couldn’t guarantee that it wouldn’t happen again.
Company spokesperson Jane Cregan told the Herald that new
software designed to increase the network’s signalling efficiency
did the exact opposite.
As a result, the computer at Central Traffic Control in Connolly
”just went blank”.
”Every signal controlled by this computer automatically went to
red and stopped working,she said.
There were a number of updates carried out in recent days on the
system and we think one of them caused this fault to occur.”
Ms Cregan added that during the crisis 15 to 20 operators we-
re deployed around the country with manual access to signalling
panels.

Page 4


