Forsattsblad till

Linkopings universitet

skriftlig tentamen vid

Datum for tentamen 2019-03-08

Sal (1 TER3(26)

Tid 8-12

Utb. kod TDDDS82

Modul TEN2
Projekttermin inklusive kandidatprojekt: Sékra, mobila

Utb. kodnamn/beniimning t

Modulnamn/benéimning System L
Systemprogramvara: Skriftlig tentamen

Institution IDA

Antal uppgifter som ingar i 6

tentamen

Jour/Kursansvarig .

Ange vem som besOker salen Mikael Asplund

Telefon under skrivtiden 0700 895 827

Besoker salen ca klockan 9-10

Kursadministrator/kontaktperson
(namn + tfor + mailaddress)

Veronica Kindeland Gunnarsson
013-28 56 34
veronica.kindeland.gunnarsson @liu.se

Tillatna hjiilpmedel

Inga

Ovrigt

Antal exemplar i pasen




Tentamen i TDDD82 Sdkra mobila system
(Systemprogramvara)

2019-03-08

o Inga hjidlpmedel &r tillatna.

o Kom ihdg att svaren pa samtliga uppgifter maste MOTIVERAS, och att motiveringarna skall
vara uppstéllda pa ett sddant sitt att det gér att folja hur Du ténkt. OMOTIVERADE SVAR
GER 0 POANG OM INGET ANNAT SAGS.

¢ Ansvarig: Mikael Asplund (ndbar pa tel. 0700-895827).

e Maxpoing dr 30 poing. For betyg 3 krdvs minst 15 poing, for betyg 4 krévs 20 poéing och for
betyg 5 krdvs 25 poidng.

Lycka till!!!

TEN

G



1. A public transport company has started a project to enable on-demand bus tansports, guided
by how passengers request certain travel needs. One part of this new system is a module that
keeps track of the number of passengers currently located on each bus. Listing 1 shows the
basic outline of the code running in this module.

Listing 1: BusFleet

1
2
3
4
5
6
7
8
9

» }

public class BusFleet {

final int busCapacity = 60;
final int fleetSize = 100;
int[] passengers = new int[fleetSize]; //initialized to zeroes

//add a passenger to bus i if there is room
//returns true if a passenger could be added, and false otherwise
boolean addPassenger(int i){
if (passengers[i] <= busCapacity) {
passengers[i] = passengers[i]+1;
return true;

return false;

}

//remove a passenger from bus i if there is at least one
//returns true if a passenger could be removed, and false otherwise
boolean removePassenger (int i){
if (passengers[i] > 0) {
passengers[i] = passengers[i]—1;
return true;

return false;

}

int getTotalPassengerCount() {
int count = 0;
for (imt p : passengers) {
count += p;
}

return count;

Assume that the methods can be invoked from multiple concurrent threads.

(a) Describe how a race condition can occur in the provided code. Be detailed in describing

the trace of execution (e.g., by referring to line numbers of the listings).

(2 points)



(b) Modify the code by inserting synchronization primitives that will prevent race condi-
tions in the code. Your code does not have to be syntactially correct (but you should be
clear how variables are initialized). You do not have to repeat all the existing code in
your solution, as long as it is clear what changes you want to make.

(2 points)

(c) Depending on your choice of choice of scope for the locking in (b), there might be a
way to allow more concurrency (i.e., more simultaneous threads modifying the data at
the same time). If you haven’t already done so, change your code to provide maximum
concurrency.

(2 points)

(d) Discuss how your solution in (c) affects the semantics of the getTotalPassengerCount fun-
ction, and how this could potentially be changed.

(2 points)

(a) Name at least 4 important items that are an essential part of the state of a process (i.e.,
that must be saved and restored at a context switch).

(2 points)
(b) Given the following (Unix) C program:

#include <stdio.h>
#include <unistd.h>

int main{()
{
fork (
fork (
fork ();
printf ("Hello\n");
return 0;

17
.
’

)
)
)

}

How often is Hello printed to the standard output when executing this program? Ex-
plain your answer carefully (just guessing the right number gives no points).

(2 points)




3. Consider the following resource allocation problem in a system with 3 resources (R1-R3), and
4 processes (P1-P4). The table indicates the currently allocated resources and in parenthesis
the maximum possible demand.

RI | R2 | R3
P10 | 2@ |0
P2 1(1) | 0(0) | 0(0)
P31 [0 | 0(D)
P4|0(0) |14 |1(1)

The currently available resources are: [1, 3, 1]. Use Banker’s algorithm to determine if the
request [1, 0, 1] from Process P3 should be granted.

(5 points)
4. (a) Applications can have varying QoS requirements. Explain what it means if an applica-
tion is elastic or inelastic, and give one example of each type of application.
(2 points)
(b) Describe the main parameters of the token bucket traffic shaping method.
(2 points)



5. Consider the three timelines for nodes P1, P2 and P3 in the figure below. The arrows between
the lines indicate messages as they are sent and received by the respective nodes. Use Lam-
port’s logical clock algorithm to set timestamps for the events a-.

o
o
[g]

Pl

o
(0]
—

P2

P3

What can you conclude from these timestamps alone regarding the following statements:

e h—b

e g f
eb—j

where — indicates the happened-before relation?
(5 points)

6. Explain the concepts of availability and reliability. Also explain how each of these attributes
can be measured over time.

(4 points)




