Tentamen i TDDD82 Sdkra mobila system
(Systemprogramvara)

2017-03-03, kl. 08-12, Sal TER3

e Inga hjdlpmedel ar tillatna.

e Kom ihdg att svaren pa samtliga uppgifter maste MOTIVERAS, och att
motiveringarna skall vara uppstallda pa ett sidant sitt att det gér att folja
hur Du tinkt. OMOTIVERADE SVAR GER 0 POANG OM INGET AN-
NAT SAGS.

e Jour: Mikael Asplund (nabar pa tel. 0700-895827).

e Maxpoéing &r 30 podng. For betyg 3 krdvs minst 15 poédng, for betyg 4
kravs 20 podng och for betyg 5 krdvs 25 poidng.

Lycka till!!!

1. Consider system that interacts with a medical device. The communica-
tion between the device and the control system is made through a special
interface which has the following API:

e void initialize () - This function initialises the device, should
be done once during system startup.

e void sendCommand (c) - Sends the command c to the device.

e bool checkStatus () - Checks wether the most recent command
was successful or not. Will return OK or NOK. The status will typically
not be available until 100ms after the command was sent, but will
always be available within 500ms. This function will block until the
status is available.

e int readValue (v) - Read value of variable v.

Note that this API is not thread safe. That is, if multiple function calls are
made concurrently, the behaviour is undefined. During the time between
a command is sent and the status is read it is allowed to invoke the
readValue (v) function, but not the sendCommand (c) function.

Write pseudocode for the two functions below (using either semaphores
or a monitor):

e bool sendCommandTs (c) - Sends the command c to the device,
returns the status of the command OK or NOK.

e int readvValueTS (v) - Read value of variable v.

As opposed to the original APL these functions should be thread safe
(hence the TS in the names). That is, it should be possible to invoke them
from concurrent processes/threads, without race conditions. Note that
since the sendCommand (c) function can take a long time to return, your
implementation should allow concurrent calls to the readvalue (v) fun-
ction.

6 points

2. Describe the four Coffman conditions. How do these conditions relate to
deadlock prevention?

5 points

3. Consider the following resource allocation problem in a system with 3 re-
sources (R1-R3), and 4 processes (P1-P4). The table indicates the currently
allocated resources and in parenthesis the maximum possible demand.

R1 R2 | R3

P1|1(1)]0(1)|2(4)

P210(0)|0(8) |0(4)

P30 |5G)] 1(1)

P4 10() |3(8)[1(2)

The currently available resources are: [1, 0, 5]. Use Banker’s algorithm to
determine if the request [0, 0, 4] from Process 2 should be granted.

4 points

4. Explain the concept of horizontal distribution. Use an example to clarify.
Also explain how this concept relates to fault tolerance and replication.

5 points

5. Consider the three timelines for nodes A, B and C in the figure below. The
arrows between the lines indicate messages as they are sent and received
by the respective nodes. Use Lamport’s locgical clock algorithm to set
timestamps for the events a-h.

i /? e\ /h ;
B a\ /'e\g >
C c d f >

What can you conclude from these timestamps regarding the following
statements:

e d—e
o a—f

o f—h

where — indicates the happened-before relation?

5 points

6. Use the terminology from IFIP Working Group 10.4 to analyse the fault-
error-failure chain in the example below (Computer Business Review
February 1st 2017). Classify the fault as permanent/transient/intermittent.

GitLab has currently been taken offline after suffering a major
backup restoration failure following an incident of accidental
data deletion.

The source-code hub released a series of tweets following the
incident, one of which confirms the failure: “We accidentally
deleted production data and might have to restore from back-
up.” This included a link to a Google Doc file with live notes.
The data loss took place when a system administrator acciden-
tally deleted a directory on the wrong server during a database
replication process. A folder containing 300GB of live produc-
tion data was completely wiped.

GitLab said: “This incident affected the database (including is-
sues and merge requests) but not the git repos (repositories and
wikis).”

It was identified that out of the 5 backup techniques deployed,
none had either not been working reliably or set up in the first
place. The last potentially useful backup was taken six hours
before the issue occurred.

However, this is not seen to be of any help as snapshots are
normally taken every 24 hours and the data loss occurred six
hours after the previous snapshot which results to six hours of
data loss.

5 points

