Försättsblad till skriftlig tentamen vid Linköpings universitet

Datum för tentamen	2016-08-25		
Sal (1)	TER2		
Tid	14-18		
Kurskod	TDDD82		
Provkod	TEN2		
Kursnamn/benämning Provnamn/benämning	Projekttermin inklusive kandidatprojekt: Säkra, mobila system Systemprogramvara: Skriftlig tentamen		
Institution	IDA		
Antal uppgifter som ingår i tentamen	6		
Jour/Kursansvarig Ange vem som besöker salen	Mikael Asplund		
Telefon under skrivtiden	0700 895 827		
Besöker salen ca klockan	15		
	Madeleine Häger Dahlqvist, madeleine.hager.dahlqvist@liu.se 013-282360		
Tillåtna hjälpmedel			
Övrigt			
Antal exemplar i påsen			

Tentamen i TDDD82 Säkra mobila system (Systemprogramvara)

2016-08-25, kl. 14-18, Sal TER2

- Inga hjälpmedel är tillåtna.
- Kom ihåg att svaren på samtliga uppgifter måste MOTIVERAS, och att motiveringarna skall vara uppställda på ett sådant sätt att det går att följa hur Du tänkt. OMOTIVERADE SVAR GER 0 POÄNG OM INGET AN-NAT SÄGS.
- Jour: Mikael Asplund (nåbar på tel. 0700-895827).
- Maxpoäng är 30 poäng. För betyg 3 krävs minst 15 poäng, för betyg 4 krävs 20 poäng och för betyg 5 krävs 25 poäng.

Lycka till!!!

1. A process can be considered to have five possible states out of which two relate to initialising (new) and terminating (terminated) a process. Draw a figure showing the remaining three states and the transitions between them. Indicate in the figure how each transition is enabled (i.e., when does the transition happen?).

(6 points)

- 2. Assume that the programming environment provides a *mutex lock* construction, with the following operations:
 - acquire(l) is an atomic operation that acquires the lock l if it is available, and otherwise suspends the calling process and puts it in a waiting queue until the lock is available
 - release(l) is an atomic operation that releases the lock l, and wakes the first process in the queue waiting for the lock

Use the lock to implement the *wait* and *signal* operations according to semaphore semantics.

(6 points)

- 3. Consider a distributed web service that provides users with financial counseling. A core component in this service is the Bank Interface Module (BIM) that interfaces with customer bank accounts. BIM maintains a queue and a number of threads that respond to requests from the frontend services. The queue is implemented using the *monitor* construction, and has two operations:
 - enqueue: add a request to the queue
 - dequeue: remove the first request from the queue, if the queue is non-empty

Provide pseudo-code for the implementation of the dequeue operation.

(5 points)

4. Consider the following resource allocation problem in a system with 3 resources (R1-R3), and 4 processes (P1-P4). The table indicates the currently allocated resources and in parenthesis the maximum possible demand.

	R1	R2	R3
P1	1 (2)	0 (0)	1(1)
P2	3 (4)	0 (0)	0 (0)
P3	0 (6)	1(1)	0 (4)
P4	2 (3)	1(2)	0 (5)

The currently available resources are: [2, 0, 4]. Use Banker's algorithm to determine if the request [0, 0, 2] from Process P4 should be granted.

(4 points)

- 5. Consider an instant messaging system running on a mobile device that connects to a server where availability (online, offline, ...) state for other users in the system is stored and can be retrieved. Decide which of the following properties is a functional property and which is an extrafunctional property (also sometimes called a non-functional property), and motivate your answer!
 - (a) An update about another user's state on the server should result in an update on the own device.
 - (b) The maximum latency for an update of another user's state on the own device should be 5 seconds.
 - (c) The application should make batch updates for consecutive messages (those that are produced by one user in a row with no reply from corresponding receiver).
 - (d) The system should be scalable for up to 30 users, given a network bandwidth of 10Mb/s.

(4 points)

- 6. It has been shown that in order to reach majority agreement in a set of replicas in a distributed system where some nodes might crash, one must assume the so called synchronous system model.
 - (a) Explain the meaning of this model (2p)
 - (b) Explain why it can be difficult to fulfil these assumptions for a system which is spread out across a wide area (e.g., multiple cities).
 - (c) Give an example of when this system model is suitable (1p)

(5 points)