Försättsblad till skriftlig tentamen vid Linköpings universitet

Datum för tentamen	2019-01-14	
Sal (2)	TER1(69) TERE(3)	
Tid	8-13	
Utb. kod	TDDD72	
Modul	TEN1	
Utb. kodnamn/benämning Modulnamn/benämning	Logik En skriftlig tentamen	
Institution	IDA	
Antal uppgifter som ingår i tentamen	4	
Jour/Kursansvarig Ange vem som besöker salen	Tommy Persson	
Telefon under skrivtiden	013-28 44 97	
Besöker salen ca klockan	ja ca 09:30	
Kursadministratör/kontaktperson (namn + tfnr + mailaddress)	Anna Grabska Eklund, ankn. 2362, anna.grabska.eklund@liu.se	
Tillåtna hjälpmedel	You can use your own copies of slides as well as an English-Swedish dictionary.	
Övrigt		
Antal exemplar i påsen		

EXAM: TDDD72 (LOGIC)

14 JANUARY 2019

Exam rules

- 1. You can use your own copies of slides from lectures as well as an English-Swedish dictionary.
- 2. Exercises are formulated in English, but answers can be given in English or in Swedish.
- 3. You are not allowed to:
 - use any writing material other than indicated in point 1, in particular you cannot use ebook with exercises and solutions;
 - use calculators, mobile phones or any other electronic devices;
 - lend/borrow/exchange anything during the exam.
- 4. If an exercise has not been specified completely as you see it, state which (reasonable) assumptions you have made.
- 5. Begin each exercise on a new sheet of paper. Write only on one side of the paper. Write clearly and make sure to give adequate explanations for all your answers.
- 6. There are 4 exercises, each exercise gives maximum 10 points (40 points together). Grading is provided in the following table.

number of points (n)	grade
$34 \le n \le 40$	5
$27 \le n < 34$	4
$20 \le n < 27$	3
n < 20	U (not passed)

EXERCISES

EXERCISE 1

1. Prove the following propositional formula:

$$[(\neg Q \to P) \land R] \to [P \lor (Q \land R)]$$

- (a) (2 points) using Gentzen system;
- (b) (2 points) using tableaux.
- 2. Prove the following formula of first-order logic:

$$\forall x \exists y \forall z \Big(P(x, y, z) \lor P(z, y, x) \Big) \to \forall x \exists y \exists z \Big(P(x, y, z) \lor P(z, y, x) \Big)$$

- (a) (3 points) using resolution;
- (b) (3 points) using tableaux.

EXERCISE 2

- 1. (4 points) Translate the following sentences into a set of propositional formulas:
 - "Parcels are heavy, of moderate weight or light."
 - "Heavy parcels are red."
 - "Parcels of moderate weight are green."
 - "Light parcels are blue."
 - "Chose a green parcel or a parcel not being red."
 - "Chose a blue parcel or a parcel not being green."
- 2. (2 points) Assuming that each parcel has a unique color and exactly one parcel is to be chosen,
 - hypothesize what choice as to parcel's color can be made;
 - explain your reasoning informally.
- 3. (4 points) Prove your claim formally using a proof system of your choice (tableaux, Gentzen system or resolution).

EXERCISE 3

Consider the following properties of a binary relation R:

- (a) $\forall x \forall y \forall z [R(x,y) \to (R(y,z) \to R(z,x))];$
- (b) $\forall x \forall y \forall z [R(x,y) \rightarrow (R(x,z) \rightarrow R(y,z))];$
- (c) $\exists x \forall y [R(x,y) \rightarrow R(y,x)].$
- (1) (4 points) Prove informally that $((a) \land (b)) \rightarrow (c)$.
- (2) (6 points) Prove formally (using tableaux, Gentzen system or resolution) that $((a) \land (b)) \rightarrow (c)$.

EXERCISE 4

1. (2 points) Design a Datalog database for storing information about employees (including position and salary) as well as information about the *direct supervisor* relationship among employees.

By $e' \leadsto e''$ we denote that e' is a direct supervisor of e''.

We define that employee e' is an *indirect supervisor* of employee e'' if there is $k \ge 1$ and employees e_1, e_2, \ldots, e_k such that:

$$e' \leadsto e_1 \leadsto e_2 \leadsto \ldots \leadsto e_{k-1} \leadsto e_k \leadsto e''.$$

2. (1 point) Express in predicate calculus the constraint:

"the relationship of being an indirect supervisor is transitive."

- 3. (1 point) Provide another integrity constraint concerning direct supervisor relationship.
- 4. Formulate in logic queries selecting:
 - (a) (2 points) all employees being direct supervisors of software engineers or database experts;
 - (b) (4 points) all pairs of employees X, Y such that X is a direct or indirect supervisor of Y, and X has a lower salary than Y.