1079

Försättsblad till skriftlig tentamen vid Linköpings universitet

Datum för tentamen	2018-08-31
Sal (1)	TER3(13)
Tid	8-13
Kurskod	TDDD72
Provkod	TEN1
IXUI DITUITATA & CALLES	Logik En skriftlig tentamen
Institution	IDA
Antal uppgifter som ingår i tentamen	4
Jour/Kursansvarig Ange vem som besöker salen	Andrzej Szalas
Telefon under skrivtiden	013-28 19 95 eller 0709 46 1995
Besöker salen ca klockan	ja
Kursadministratör/kontaktperson (namn + tfnr + mailaddress)	Anna Grabska Eklund, ankn. 2362, anna.grabska.eklund@liu.se
Tillåtna hjälpmedel	You can use your own copies of slides as well as an English-Swedish dictionary.
Övrigt	
Antal exemplar i påsen	

EXAM: TDDD72 (LOGIC)

31 August 2018

Exam rules

- 1. You can use your own copies of compendium (extract from slides) as well as an English↔Swedish dictionary.
- 2. Exercises are formulated in English, but answers can be given in English or in Swedish.
- 3. You are not allowed to:
 - use any writing material other than indicated in point 1, in particular you cannot use full slides nor the ebook with exercises and solutions;
 - use calculators, mobile phones nor any other electronic devices;
 - lend/borrow/exchange anything during the exam.
- 4. If an exercise has not been specified completely as you see it, state which (reasonable) assumptions you have made.
- 5. Begin each exercise on a new sheet of paper. Write only on one side of the paper. Write clearly and make sure to give adequate explanations for all your answers.
- 6. There are 4 exercises, each exercise gives maximum 10 points (40 points together). The exam will be graded according to the following table.

number of points (n)	grade
$34 \le n \le 40$	5
$27 \le n < 34$	4
$20 \le n < 27$	3
n < 20	U (not passed)

EXERCISES

EXERCISE 1

1. Prove the following propositional formula:

$$[(\neg P \lor Q) \land (\neg S \lor T)] \to [(P \land S) \to (Q \land T)]$$

- (a) (2 points) using tableaux;
- (b) (2 points) using Gentzen system.
- 2. Prove the following formula of first-order logic:

$$\forall x \exists y \forall z \Big(P(x,y,z) \lor P(z,y,x) \Big) \to \forall x \exists y \exists z \Big(P(x,y,z) \lor P(z,y,x) \Big)$$

- (a) (3 points) using resolution;
- (b) (3 points) using Gentzen system.

EXERCISE 2

1. (4 points) Translate the following sentences into a set of propositional formulas:

"Each object is marked by one of symbols: \triangle , \bigcirc , \square ."

"Objects marked by △ are red."

"Objects marked by O are green."

"Objects marked by □ are blue."

"Chose an object being green or not being red."

"Chose an object being blue or not being green."

- 2. (2 points) Assuming that exactly one object is to be chosen, hypothesize what choice as to the object's color can be made and explain your reasoning informally.
- 3. (4 points) Prove your claim formally using proof system of your choice (tableaux or resolution).

EXERCISE 3

Consider a relation R and properties:

- (a) $\forall x \forall y \forall z [(R(x,y) \land R(y,z)) \rightarrow R(z,y)];$ (b) $\forall x \forall y [R(x,y) \rightarrow \exists z [R(z,x)]];$ (c) $\forall x \forall y [R(x,y) \rightarrow R(y,x)].$
- (4 points) Check informally whether the conjunction of (a) and (b) implies (c).
- (6 points) Verify your informal reasoning using resolution or Gentzen system.

EXERCISE 4

1. (2 points) Design a Datalog database for storing information about employees (including position and salary) as well as information about the *direct supervisor* relationship among employees.

By $e' \leadsto e''$ we denote that e' is a direct supervisor of e''.

We say that employee e' is an *indirect supervisor* of employee e'' if there is $k \ge 1$ and employees e_1, e_2, \ldots, e_k such that:

$$e' \rightsquigarrow e_1 \rightsquigarrow e_2 \rightsquigarrow \ldots \rightsquigarrow e_{k-1} \rightsquigarrow e_k \rightsquigarrow e''$$
.

2. (1 point) Express in predicate calculus the constraint:

"every employee, excluding the president of the board, has a direct supervisor."

- 3. (1 point) Provide an integrity constraint concerning the indirect supervisor relationship.
- 4. Formulate in logic queries selecting:
 - (a) (2 points) all pairs of employees consisting of software developers with one being a direct supervisor of another;
 - (b) (4 points) all pairs of employees X, Y such that the X is a direct or indirect supervisor of Y, and X has a lower salary than Y.