Försättsblad till skriftlig tentamen vid Linköpings universitet

Datum för tentamen	2018-04-05	
Sal (1)	TER2(19)	
Tid	14-19	
Kurskod	TDDD72	
Provkod	TEN1	
Kursnamn/benämning Provnamn/benämning	Logik En skriftlig tentamen	
Institution	IDA	
Antal uppgifter som ingår i tentamen	4	
Jour/Kursansvarig Ange vem som besöker salen	Olov Andersson	
Telefon under skrivtiden	013-28 20 69	
Besöker salen ca klockan	ja	
Kursadministratör/kontaktperson (namn + tfnr + mailaddress)	Anna Grabska Eklund, ankn. 2362, anna.grabska.eklund@liu.se	
Tillåtna hjälpmedel	You can use your own copies of slides as well as an English-Swedish dictionary.	
Övrigt		
Antal exemplar i påsen		

EXAM: TDDD72 (LOGIC)

5 APRIL 2018

Exam rules

- 1. You can use your own copies of slides from lectures as well as an English-Swedish dictionary.
- 2. Exercises are formulated in English, but answers can be given in English or in Swedish.
- 3. You are not allowed to:
 - use any writing material other than indicated in point 1, in particular you cannot use ebook with exercises and solutions;
 - use calculators, mobile phones or any other electronic devices;
 - lend/borrow/exchange anything during the exam.
- 4. If an exercise has not been specified completely as you see it, state which (reasonable) assumptions you have made.
- 5. Begin each exercise on a new sheet of paper. Write only on one side of the paper. Write clearly and make sure to give adequate explanations for all your answers.
- 6. There are 4 exercises, each exercise gives maximum 10 points (40 points together). Grading is provided in the following table.

number of points (n)	grade
$34 \le n \le 40$	5
$27 \le n < 34$	4
20 < n < 27	3
$\overline{n} < 20$	U (not passed)

EXERCISES

EXERCISE 1

1. Prove the following propositional formula:

$$[(\neg P \vee \neg Q) \wedge (P \vee \neg Q) \wedge R] \rightarrow [\neg Q \wedge R]$$

- (a) (2 points) using Gentzen system;
- (b) (2 points) using tableaux.
- 2. Prove the following formula of first-order logic:

$$\left(\exists x \forall y \forall z [R(x,y) \land S(y,z) \land T(x)]\right) \rightarrow \left(\forall x \exists y [R(y,x) \land S(x,x) \land T(y)]\right)$$

- (a) (3 points) using resolution;
- (b) (3 points) using Gentzen system.

EXERCISE 2

- 1. (4 points) Translate the following sentences into a set of propositional formulas:
 - "When John is in a bad mood, he goes to a cinema."
 - "When John is in a moderate mood, he stays at home."
 - "When John is in a good mood, he visits friends."
 - "John cannot be in two different moods."
 - "John is in a moderate or good mood."
 - "John is in a moderate or bad mood."
- 2. (2 points) Hypothesize what is John's decision where to spend time and explain your reasoning informally.
- 3. (4 points) Prove your claim formally using proof system of your choice (tableaux, resolution or Gentzen system).

EXERCISE 3

Consider a relation R and properties:

- (a) $\forall x \forall y \forall z [(R(x,y) \land R(x,z)) \rightarrow R(y,z)]$
- (b) $\forall x \forall y [R(x,y) \rightarrow \exists z [R(z,x) \land R(z,y)]]$
- (c) $\forall x \forall y [R(x,y) \to R(y,x)].$
- (4 points) Check informally whether the conjunction of (a) and (b) implies (c).
- (6 points) Verify your informal reasoning using tableaux, resolution or Gentzen system.

EXERCISE 4

- 1. (2 points) Design a Datalog database for storing information about articles in newspapers. Each article is characterized by:
 - its title
 - its length (short, medium, long)
 - · directly related articles.
- 2. (1 point) Express in predicate calculus the constraint:

"every article is directly related to itself."

- 3. (1 point) Provide another sample integrity constraint concerning the "directly related" relation.
- 4. Formulate Datalog queries selecting:
 - (a) (2 points) all short or medium articles related to article entitled "Recursion in DBMS";
 - (b) (4 points) all long articles directly or indirectly related to article entitled "Recursion in DBMS", assuming that articles A and B are directly or indirectly related when there is $k \geq 0$ and articles A_1, \ldots, A_k such that:

$$A \longleftrightarrow A_1 \longleftrightarrow \ldots \longleftrightarrow A_k \longleftrightarrow B,$$

where $C \longleftrightarrow D$ denotes the fact that articles C and D are directly related.