

Försättsblad till skriftlig tentamen vid Linköpings universitet

Datum för tentamen	2015-04-09	
Sal (1)	TER1	
Tid	14-19	
Kurskod	TDDD72	
Provkod	TEN1	
Kursnamn/benämning Provnamn/benämning	Logik En skriftlig tentamen	
Institution	IDA	
Antal uppgifter som ingår i tentamen	4	
Jour/Kursansvarig Ange vem som besöker salen	Olof Andersson	
Telefon under skrivtiden	013-28 20 69	
Besöker salen ca klockan	ja	
Kursadministratör/kontaktperson (namn + tfnr + mailaddress)	Anna Grabska Eklund, ankn. 2362, anna.grabska.eklund@liu.se	
Tillåtna hjälpmedel	You can use your own copies of slides as well as an English-Swedish dictionary.	
Övrigt		
Antal exemplar i påsen		

EXAM: TDDD72 AND TDDC36 (LOGIC)

9 APRIL 2015

RULES

- 1. You can use your own copies of slides as well as an English-Swedish dictionary.
- 2. Exercises are formulated in English, but answers can be given in English or Swedish.
- 3. You are not allowed to:
 - use any writing material other than indicated in point 1;
 - use calculators, mobile phones or any other electronic devices;
 - lend/borrow/exchange anything during the exam.
- 4. If an exercise has not been specified completely as you see it, state which (reasonable) assumptions you have made.
- 5. Begin each exercise on a new sheet of paper. Write only on one side of the paper. Write clearly and make sure to give adequate explanations for all your answers.
- 6. There are 4 exercises, each exercise gives maximum 10 points (40 points together). Grading is provided in tables below.

number of points	Swedish grade	ETCS grade
34 — 40	5	A
27 — 33	4	В
20 - 26	3	C
0 — 19	not passed	F (not passed)

EXERCISES

EXERCISE 1

1. Prove the following propositional formula:1

$$[(P \lor Q) \land (\neg Q \lor R \lor S)] \rightarrow [\neg R \rightarrow (P \lor S)]$$

- (a) (2 points) using tableaux;
- (b) (2 points) using Gentzen system (as provided in the book or during lectures up to your choice).
- 2. Prove the following formula of predicate logic:

$$\Big(\exists x \forall y \forall z [R(x,y) \land S(y,z) \land T(x)]\Big) \rightarrow \Big(\forall x \exists y [R(y,x) \land S(x,x) \land T(y)]\Big)$$

- (a) (3 points) using tableaux;
- (b) (3 points) using resolution.

EXERCISE 2

- 1. (4 points) Translate the following sentences into a set of propositional formulas:
 - "Boxes are small or medium."
 - "Each box is red, green or blue."
 - "Small boxes are blue or red."
 - "Medium boxes are green or blue."
 - "For shipment robots do chose red boxes."
 - "For activities other than shipment robots chose neither blue nor green boxes."
- 2. (2 points) Assuming that exactly one box is to be chosen hypothesize what choice (size and color) can be made and explain your reasoning informally.
- 3. (4 points) Prove your claim formally using a proof system of your choice (tableaux, Gentzen system or resolution. Please do not use truth table method, as this will give no points).

¹Recall that there is precedence among the connectives. The order of precedence from high to low is: negation, conjunction, disjunction, implication, equivalence. For example, $\neg Q \lor S \land R$ stands for $(\neg Q) \lor (S \land R)$.

EXERCISE 3

Consider a building, where rooms are (or are not) connected by corridors. There might also be corridors connecting rooms to themselves. Corridors connecting different rooms are called *useful* and those connecting a room to itself are called *redundant*.

Assume that C(x, y) expresses the fact that rooms x and y are connected by a corridor.² Assume also that the following properties are satisfied:

- (i) relation C is serial;
- (ii) relation C is symmetric;
- (iii) for all rooms x, y, z, whenever there is a corridor between x and y and between x and z then there is also a corridor between y and z.

Please:

- 1. (3 points) express in predicate logic properties (i), (ii), (iii);
- 2. (2 points) check informally whether the conjunctio=n of (i), (ii), (iii) implies that "every room is connected (by a redundant corridor) to itself";
- 3. (5 points) verify your informal reasoning using a proof system of your choice (tableaux, Gentzen system or resolution).

EXERCISE 4

1. (2 points) Design a Datalog database for storing information about sizes of objects in a given area ("small", "medium", "large") and relationships between these objects, including information whether two given objects are directly connected.

Object o' is indirectly connected to object o'' if there is $k \geq 1$ and objects o_1, o_2, \ldots, o_k such that o' is connected to o_1, o_1 is connected to o_2, \ldots, o_{k-1} is connected to o_k and o_k is connected to o''.

2. (1 point) Express in predicate calculus the constraint:

"the relationship of being directly connected is symmetric and not transitive."

- 3. (1 point) Provide an exemplary integrity constraint concerning "connected".
- 4. Formulate in logic queries selecting:
 - (a) (2 point) all pairs of objects consisting of not small objects connected to each other;
 - (b) (4 points) all pairs of large objects connected directly or indirectly to each other.

²Note that C(x, x) means that there is a redundant corridor connecting x to itself.