

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Datum för tentamen	2015-01-09	
Sal (1)	TER3	
Tid	8-13	
Kurskod	TDDD72	
Provkod	TEN1	
Kursnamn/benämning Provnamn/benämning	Logik En skriftlig tentamen	
Institution	IDA	
Antal uppgifter som ingår i tentamen	4	
Jour/Kursansvarig Ange vem som besöker salen	Tommy Persson	
Telefon under skrivtiden	013284497	
Besöker salen ca klockan	ja	
Kursadministratör/kontaktperson (namn + tfnr + mailaddress)	Anna Grabska Eklund, ankn. 2362, anna.grabska.eklund@liu.se	
Tillåtna hjälpmedel	1. You can use your own copies of slides as well as an English-Swedish dictionary. 2. Exercises are formulated in English, but answers can be given in English or Swedish.	
Övrigt		
Antal exemplar i påsen		

EXAM: TDDD72 (LOGIC)

9 JANUARY 2015

RULES

- 1. You can use your own copies of slides as well as an English-Swedish dictionary.
- 2. Exercises are formulated in English, but answers can be given in English or Swedish.
- 3. You are not allowed to:
 - use any writing material other than indicated in point 1;
 - use calculators, mobile phones or any other electronic devices;
 - lend/borrow/exchange anything during the exam.
- 4. If an exercise has not been specified completely as you see it, state which (reasonable) assumptions you have made.
- 5. Begin each exercise on a new sheet of paper. Write only on one side of the paper. Write clearly and make sure to give adequate explanations for all your answers.
- 6. There are 4 exercises, each exercise gives maximum 10 points (40 points together). Grading is provided in the following table.

number of points (n)	Swedish grade	ETCS grade
$34 \le n \le 40$	5	A
$27 \le n < 34$	4	В
$20 \le n < 27$	3	C
n < 20	not passed	F (not passed)

EXERCISES

EXERCISE 1

1. Prove the following propositional formula

$$\left[(\neg R \lor P) \land (\neg (P \lor Q) \lor R) \rightarrow (\neg Q \lor P) \right]$$

- (a) (2 points) using tableaux;
- (b) (2 points) using Gentzen system (as provided in the book or during lectures up to your choice).
- 2. Prove the following formula of predicate logic, where a, b are constants:

$$\begin{split} \Big[\forall y Q(b,y) \wedge \forall x \forall y [Q(x,y) \to Q(s(x),s(y))] \Big] \to \\ \exists z [Q(b,z) \wedge Q(z,s(s(b)))]. \end{split}$$

- (a) (3 points) using tableaux;
- (b) (3 points) using resolution.

EXERCISE 2

- 1. (4 points) Translate the following claims of L, T into a set of propositional formulas, where L, T and John are persons:
 - claims of L:

"John rests on Saturdays."

"John reads books and does not watch TV on Saturdays."

• claims of T:

"when John does not rest, he does not watch TV either."

"on Saturdays John reads books or watches TV or cooks."

- 2. (2 points) Assuming that L always lies and T always tells the truth, hypothesize what is John's activity.
- 3. (4 points) Prove your claim formally using a proof system of your choice (tableaux, Gentzen system or resolution).

EXERCISE 3

Consider games, in which players move stones between places. A move from place p to place q is possible if there is an arrow between p and q. For example, in the game represented in the following figure,

there are moves from a to b, from b to c, from c to a and from c to c and there are no moves from b to a, from c to b, from a to a and from b to b.

Different games are obtained by drawing different connections between places. A particular game can, for example, satisfy the following conditions:

- (a) "From every place there is a move."
- (b) "Every two places p, q have the property that whenever there is a move from p to q then there is also a move from q to p."
- (c) "For every places p, q, r, if there are moves from p to q and from p to r then there is also a move from q to r."
- 1. (3 points) Express in predicate logic properties (a), (b) and (c).
- 2. (2 points) Check informally whether the conjunction of (a), (b) and (c) implies that "From every place there is a move to itself.".
- 3. (5 points) Verify your informal reasoning using resolution.

EXERCISE 4

1. (2 points) Design a Datalog database for storing information about regions on a map. Each region is characterized by its size (small, medium or large) and its characteristics (industrial, agricultural or nature). In addition, the database should contain information about *direct subregions*, denoted by \Box . For example, in figure below we have regions a,b,c and d, and we have $c \Box b, d \Box c$ but it is not the case that $d \Box b$ or $a \Box b$.

2. (1 point) Express in predicate calculus the constraint:

"every region has a unique (exactly one) size and a unique characteristics."

- 3. (1 point) Provide an exemplary integrity constraint concerning the relation \Box .
- 4. Formulate in logic queries selecting:
 - (a) (2 points) all large industrial direct subregions of region a;
 - (b) (4 points) all small (not necessarily direct) subregions of medium agricultural regions, where region a is a subregion of b if $a \sqsubset b$ or there is $n \ge 1$ and regions r_1, \ldots, r_n such that $a \sqsubset r_1 \sqsubset r_2 \sqsubset \ldots \sqsubset r_n \sqsubset b$.