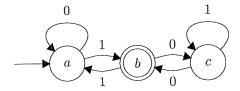
Försättsblad till skriftlig tentamen vid Linköpings universitet

	1
Datum för tentamen	2019-01-07
Sal (1)	<u>TER2(4)</u>
Tid	14-18
Utb. kod	TDDD65
Modul	TEN1
Utb. kodnamn/benämning Modulnamn/benämning	Introduction to the Theory of Computation Skriftlig tentamen
Institution	IDA
Antal uppgifter som ingår i tentamen	6
Jour/Kursansvarig Ange vem som besöker salen	Christer Bäckström
Telefon under skrivtiden	0705-840889
Besöker salen ca klockan	15
Kursadministratör/kontaktperson (namn + tfnr + mailaddress)	Annelie Almquist 2934 annelie.almquist@liu.se
Tillåtna hjälpmedel	Ordbok från/mellan engelska och annat språk. Inga övriga hjälpmedel.
Övrigt	
Antal exemplar i påsen	

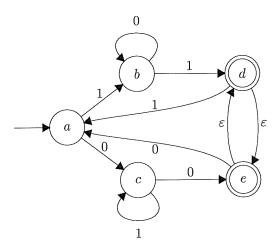
TDDD65 Introduction to the Theory of Computation 2019-01-07

Materials allowed: A dictionary from English to any other language is allowed. No other books, notes etc. are allowed and no electronic equipment (calculators, computer, mobile phones etc.) are allowed.

Grading: The maximum number of points is 30 and 15 points are required to pass the examination. At least 15 p is required for grade 3, at least 20 p is required for grade 4 and at least 25 p is required for grade 5.


Please observe the following:

- Use only one side of each paper.
- Each problem must be solved on a separate paper (or several papers, if necessary. Subproblems of a problem (a, b, c etc.) may be solved on the same page.
- Properly justify all your answers. If you give only an answer without justification, you may get zero points even if the answer is correct.
- Make sure your answers are readable.
- Try to leave space for comments on every page.


Good luck!

Problems

- 1. Assume the alphabet $\Sigma = \{0, 1, 2\}$. Draw the state transition diagram for (4 p) a DFA that accepts exactly those strings $x_1x_2...x_n$ such that n > 0 and $x_1 + x_2 + \cdots + x_n = 4$. For example, the strings 001201 and 2101 should be accepted but 12 and 020220 should be rejected
- 2. Convert the following DFA to a regular expression using the GNFA method. (4 p)

3. Convert the following NFA to an equivalent DFA, using the standard method (4 p) (i.e. the subset construction method).

- 4. Let the language L contain all strings of the form $(01)^*(02)^*$ where the (6 p) number of 1's is less than or equal to the number of 2's.
 - (a) Prove that L is not regular by using the pumping lemma for regular languages.
 - (b) Prove that L is a CFL by providing a CFG for it.
- 5. Let A, B and C be languages.

(6 p)

- (a) Suppose A is decidable, B is undecidable and that $A \leq_m C$ and $B \leq_m C$. Can C be decidable?
- (b) Suppose A is decidable, B is undecidable and that $A \leq_m B$ and $A \leq_m C$. Can C be decidable?
- (c) Suppose A and C are undecidable, and that $A \leq_m B$ and $B \leq_m C$. Can B be decidable?
- 6. The MAXSAT problem is defined as follows.

(6 p)

Input: A CNF formula φ and a positive integer k. Question: Can at least k clauses in φ be simultaneously satisfied?

That is, in contrast to the usual SAT problem, we do not require that all clauses in φ are satisfied, it is sufficient that k clauses can be satisfied.

Prove that MAXSAT is NP-complete.