TDDD65
 Introduction to the Theory of Computation
 2018-10-22

Materials allowed: A dictionary from English to any other language is allowed. No other books, notes etc. are allowed and no electronic equipment (calculators, computer, mobile phones etc.) are allowed.

Grading: The maximum number of points is 30 and 15 points are required to pass the examination. At least 15 p is required for grade 3, at least 20 p is required for grade 4 and at least 25 p is required for grade 5 .

Please observe the following:

- Use only one side of each paper.
- Each problem must be solved on a separate paper (or several papers, if necessary. Subproblems of a problem (a, b, c etc.) may be solved on the same page.
- Properly justify all your answers. If you give only an answer without justification, you may get zero points even if the answer is correct.
- Make sure your answers are readable.
- Try to leave space for comments on every page.

Good luck!

Problems

1. Assume the alphabet $\Sigma=\{0,1,2\}$. A string $x_{1} x_{2} \ldots x_{n}$ over Σ^{*} is in numerical order if $x_{i} \leq x_{i+1}$ for all i where $1 \leq i<n$. For example, the strings 0001222 and 11122 are in numerical order, but the strings 001102 and 1012 are not in numerical order. Draw the state transition diagram for a DFA that accepts exactly those non-empty strings over Σ^{*} that are not in numerical order.
2. Convert the following DFA to a regular expression using the GNFA method.

3. Convert the following NFA to an equivalent DFA, using the standard method (i.e. the subset construction method).

4. Define the language $L=\left\{0^{k} 10^{m} 20^{n} \mid k, m \geq 0\right.$ and $\left.n \leq k+m\right\}$ over the alphabet $\Sigma=\{0,1,2\}$.
(a) Prove that L is not regular by using the pumping lemma for regular languages.
(b) Prove that L is a CFL by providing a CFG for it.
5. Prove that if two languages L_{1} and L_{2} are both decidable, then the language $L_{1} L_{2}$ is also decidable. Recall that $L_{1} L_{2}=\left\{u w \mid u \in L_{1}\right.$ and $\left.w \in L_{2}\right\}$
6. The concept of NP-completeness can be generalised to any complexity class X such that a language L is X-complete if $L \in X$ and $L^{\prime} \leq_{m}^{p} L$ for all languages $L^{\prime} \in X$ (i.e. NP-completeness is the special case where $X=N P$).
Recall that the complexity class coNP is defined to contain all languages L such that the complement language \bar{L} is in NP. For instance, coNP contains the UNSAT problem, that asks if a boolean formula is not satisfiable, since NP contains the SAT problem. Also this concept can be generalized to any complexity class X such that co X contains all languages L such that \bar{L} is in X.
(a) We can obviously define the concept of P-completeness for the class P . Is this a useful concept or not?
(b) We can obviosly define the class coP. Is this a useful class or not?
(c) It is not currently known if $\mathrm{NP}=$ coNP or not. Suppose we could prove that $\mathrm{P}=\mathrm{NP}$. Would this have any implications for whether $\mathrm{NP}=\mathrm{coNP}$?
(d) A language is called NP-intermediate if it is in NP, but it is not in P and not NP-complete. The class NPI consists of the NP-intermediate problems. What would happen to this class if we could prove that $\mathrm{P}=\mathrm{NP}$?

It is essential that you explain your answers. Just an answer gives zero points!

