TDDD65
 Introduction to the Theory of Computation
 2018-08-30

Materials allowed: A dictionary from English to any other language is allowed. No other books, notes etc. are allowed and no electronic equipment (calculators, computer, mobile phones etc.) are allowed.

Grading: The maximum number of points is 30 and 15 points are required to pass the examination. At least 15 p is required for grade 3 , at least 20 p is required for grade 4 and at least 25 p is required for grade 5 .

Please observe the following:

- Use only one side of each paper.
- Each problem must be solved on a separate paper (or several papers, if necessary. Subproblems of a problem (a, b, c etc.) may be solved on the same page.
- Properly justify all your answers. If you give only an answer without justification, you may get zero points even if the answer is correct.
- Make sure your answers are readable.
- Try to leave space for comments on every page.

Good luck!

Problems

1. Consider a language L where the strings in L is on either of the following (6 p) two forms:
$0^{n} 1$, where $n \geq 1$,
$0^{n} 2$, where $n \geq 2$.
(a) Draw the state diagram for a DFA that recognizes L.
(b) Define L by a regular expression.
2. Convert the following NFA to an equivalent DFA, using the standard (6 p) method.

3. Consider a language L defined by the following CFG.

$$
\begin{aligned}
& S \leftarrow A \\
& A \leftarrow 0 A 00|B| \varepsilon \\
& B \leftarrow 1 B 11|A| \varepsilon
\end{aligned}
$$

(a) Prove or disprove that this grammar is ambiguous.
(b) Define L with a regular expression or prove that L is not regular by using the pumping lemma.
4. Consider the usual polynomial-time mapping reduction \leq_{p}. Prove or dis- (6 p) prove each of the following claims:
(a) \leq_{p} is reflexive, i.e. for all languages $X, X \leq_{p} X$.
(b) \leq_{p} is symmetric, i.e. for all languages X and Y, if $X \leq_{p} Y$ then $Y \leq_{p} X$.
(c) \leq_{p} is transitive, i.e. for all languages X, Y and Z, if $X \leq_{p} Y$ and $Y \leq_{p} Z$, then $X \leq_{p} Z$.
5. Normally, we only distinguish between those Turing machines that are allowed to make non-deterministic moves and those that are only allowed to make deterministic moves. A finer distinction can be made using the concept of limited non-determinism, where the number of non-deterministic moves is limited. Then it is possible to define complexity classes of the type $f(n)$-P, for arbitrary function f. Given a function f, the class $f(n)$-P consists of all problems that can be decided in polynomial time on a Turing machine that makes at most $O(f(n))$ non-deterministic moves, where n is the input size.
(a) Prove that $\log n-\mathrm{P}=\mathrm{P}$.
(b) Prove that $\cup_{i>0} n^{i}-\mathrm{P}=\mathrm{NP}$.

Hint, remember that non-determinism can be simulated by search on a deterministic Turing machine. You may also assume that each non-deterministic move consists of only two choices (since this is no restriction).

