TDDD65
 Introduction to the Theory of Computation
 2016-10-26

Materials allowed: A dictionary from English to any other language is allowed. No other books, notes etc. are allowed and no electronic equipment (calculators, computer, mobile phones etc.) are allowed.

Questions: Christer Bäckström is available on phone 0705-840889 during the exam.

Grading: The maximum number of points is 30 and 15 points are required to pass the examination. At least 15 p is required for grade 3, at least 20 p is required for grade 4 and at least 25 p is required for grade 5 .

Results: When the exams are graded there will be an opportunity to see the exams and discuss the result with the examiner (this is called a tentavisning in swedish). When and where this will happen will be announced on the course homepage as soon as the grading is finished.

Please observe the following:

- Use only one side of each paper.
- Each problem must be solved on a separate paper (or several papers, if necessary. Subproblems of a problem (a, b, c etc.) may be solved on the same page.
- Properly justify all your answers. If you give only an answer without justification, you may get zero points even if the answer is correct.
- Make sure your answers are readable.
- Try to leave space for comments on every page.

Good luck!

Problems

1. Assume the alphabet $\Sigma=\{0,1\}$. Draw the state transition diagram for a DFA that accepts exactly those strings over Σ^{*} that do not end with three or more 1's. For example, the DFA should accept 0110010 and 1111011 but not 1000111 or 01111 .
2. Consider the following NFA.

(a) Convert the NFA to an equivalent DFA, using the standard method.
(b) Give a regular expression for the language accepted by this NFA. The expression should be reasonably simple.
3. Let L_{1} and L_{2} be languages over some alphabet Σ. Define the difference language $L=L_{1} \backslash L_{2}$, i.e. L contains all strings in L_{1} that are not also in L_{2}. Show that L must be regular if L_{1} and L_{2} are regular.
4. Consider a language L defined by the following CFG.

$$
\begin{align*}
& S \rightarrow A|B| 00 \mid 11 \tag{6p}\\
& A \rightarrow 0 A|1 A| 1 \\
& B \rightarrow 0 B|1 B| 0
\end{align*}
$$

(a) What is the language generated by this grammar?
(b) Show that this grammar is ambiguous.
(c) Give an equivalent grammar that is unambigious.
5. Consider the polynomial-time mapping reduction \leq_{m}^{p}. Prove or disprove (6 p) each of the following claims:
(a) For all languages A, it holds that $A \leq_{m}^{p} A$ (i.e. \leq_{m}^{p} is reflexive).
(b) For all languages A and B, if $A \leq_{m}^{p} B$ then $B \leq_{m}^{p} A$ (i.e. \leq_{m}^{p} is symmetric).
(c) For all languages A, B and C, if $A \leq_{m}^{p} B$ and $B \leq_{m}^{p} C$ then $A \leq_{m}^{p} C$ (i.e. \leq_{m}^{p} is transitive).
6. Suppose we could prove that SAT requires $O\left(2^{c} n\right)$ time, for some constant c, i.e. that SAT requires exponential time in the worst case. Explain what implications this would have for the time complexity of the other NP-complete problems, or why it would not have any such implications.

