TDDD65 Introduction to the Theory of Computation 2016-10-26

- Materials allowed: A dictionary from English to any other language is allowed. No other books, notes etc. are allowed and no electronic equipment (calculators, computer, mobile phones etc.) are allowed.
- **Questions:** Christer Bäckström is available on phone 0705-840889 during the exam.
- **Grading:** The maximum number of points is 30 and 15 points are required to pass the examination. At least 15 p is required for grade 3, at least 20 p is required for grade 4 and at least 25 p is required for grade 5.
- **Results:** When the exams are graded there will be an opportunity to see the exams and discuss the result with the examiner (this is called a *tentavisning* in swedish). When and where this will happen will be announced on the course homepage as soon as the grading is finished.

Please observe the following:

- Use only one side of each paper.
- Each problem must be solved on a separate paper (or several papers, if necessary. Subproblems of a problem (a, b, c etc.) may be solved on the same page.
- Properly justify all your answers. If you give only an answer without justification, you may get zero points even if the answer is correct.
- Make sure your answers are readable.
- Try to leave space for comments on every page.

Good luck!

Problems

1. Assume the alphabet $\Sigma = \{0, 1\}$. Draw the state transition diagram for a (4 p) DFA that accepts exactly those strings over Σ^* that do not end with three or more 1's. For example, the DFA should accept 0110010 and 1111011 but not 1000111 or 01111.

2. Consider the following NFA.

- (a) Convert the NFA to an equivalent DFA, using the standard method.
- (b) Give a regular expression for the language accepted by this NFA. The expression should be reasonably simple.
- 3. Let L_1 and L_2 be languages over some alphabet Σ . Define the difference (4 p) language $L = L_1 \setminus L_2$, i.e. L contains all strings in L_1 that are not also in L_2 . Show that L must be regular if L_1 and L_2 are regular.
- 4. Consider a language L defined by the following CFG. (6 p)

$$S \rightarrow A \mid B \mid 00 \mid 11$$
$$A \rightarrow 0A \mid 1A \mid 1$$
$$B \rightarrow 0B \mid 1B \mid 0$$

- (a) What is the language generated by this grammar?
- (b) Show that this grammar is ambiguous.
- (c) Give an equivalent grammar that is unambigious.
- 5. Consider the polynomial-time mapping reduction \leq_m^p . Prove or disprove (6 p) each of the following claims:
 - (a) For all languages A, it holds that $A \leq_m^p A$ (i.e. \leq_m^p is reflexive).
 - (b) For all languages A and B, if $A \leq_m^p B$ then $B \leq_m^p A$ (i.e. \leq_m^p is symmetric).
 - (c) For all languages A, B and C, if $A \leq_m^p B$ and $B \leq_m^p C$ then $A \leq_m^p C$ (i.e. \leq_m^p is transitive).
- 6. Suppose we could prove that SAT requires $O(2^c n)$ time, for some constant c, (4) i.e. that SAT requires exponential time in the worst case. Explain what implications this would have for the time complexity of the other NP-complete problems, or why it would not have any such implications.