TDDD65
 Introduction to the Theory of Computation 2016-08-27

Materials allowed: A dictionary from English to any other language is allowed. No other books, notes etc. are allowed and no electronic equipment (calculators, computer, mobile phones etc.) are allowed.

Questions: Christer Bäckström is available on phone 0705-840889 during the exam.

Grading: The maximum number of points is 30 and 15 points are required to pass the examination. At least 15 p is required for grade 3 , at least 20 p is required for grade 4 and at least 25 p is required for grade 5 .

Results: When the exams are graded there will be an opportunity to see the exams and discuss the result with the examiner (this is called a tentavisning in swedish). When and where this will happen will be announced on the course homepage as soon as the grading is finished.

Please observe the following:

- Use only one side of each paper.
- Each problem must be solved on a separate paper (or several papers, if necessary. Subproblems of a problem (a, b, c etc.) may be solved on the same page.
- Properly justify all your answers. If you give only an answer without justification, you may get zero points even if the answer is correct.
- Make sure your answers are readable.
- Try to leave space for comments on every page.

Good luck!

Problems

1. Consider a language L over the alphabet $\Sigma=\{0,1,2\}$ where the strings in L are on the form $x_{1} x_{2} \ldots x_{n}$ where $n \geq 1$ and $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. For example, the strings 0,001222 , 112 and 1111 are in L, but 0121 and 100122 are not in L.
(a) Draw the state diagram for a DFA that recognizes L.
(b) Define L by a regular expression. (You do not need to convert the DFA in your previous answer).
2. Convert the following NFA to an equivalent DFA, using the standar method.

3. Give a context-free grammar for each of the following languages L :
(a) L is the same language as in problem 1 ,
(b) $L=\left\{0^{n} 1^{m} 2^{n-m} \mid 1 \leq m \leq n\right\}$.
4. Consider the language

$$
\begin{equation*}
L=\left\{0^{n} 1^{3 n} \mid 1 \leq n\right\} . \tag{6p}
\end{equation*}
$$

Show that L is not regular using the pumping lemma for regular languages.
5. Prove that the function $2^{(\log n)^{2}}$ grows faster than all polynomials but slower than the exponential functions, by proving the following two claims:
(a) $n^{k} \in O\left(2^{(\log n)^{2}}\right)$ for all $k>0$.
(b) $2^{(\log n)^{2}} \in O\left(2^{k n}\right)$ for all $k>0$.
6. Is it possible that $\mathrm{P} \neq \mathrm{NP}$ but there are NP-complete problems that do not require exponential time to solve? Motivate your answer as well as you can.

