

Försättsblad till skriftlig tentamen vid Linköpings universitet

(fylls i av ansvarig)

Datum för tentamen	2013-10-30
Sal	G35
Tid	8-12
Kurskod	TDDD65
Provkod	TEN1
Kursnamn/benämning	Introduction to the Theory of Computing
Institution	IDA
Antal uppgifter som	5
ingår i tentamen	
Antal sidor på tentamen	
(inkl. försättsbladet)	3
Jour/Kursansvarig	Christer Bäckström
Telefon under skrivtid	0705-840889
Besöker salen ca kl.	c:a kl. 9
Kursadministratör	Liselotte Lundberg, 281278 liselotte.lundberg@liu.se
(namn + tfnnr + mailadress)	
Tillåtna hjälpmedel	Lexikon från engelska till valfritt annat språk. Inga övriga hjälpmedel.
Övrigt	
(exempel när resultat kan ses på	
webben, betygsgränser, visning,	
övriga salar tentan går i m.m.)	
Vilken typ av papper ska	
användas, rutigt eller linjerat	
Antal exemplar i påsen	

TDDD65 Introduction to the Theory of Computation 2013-10-30, kl. 8-12, Room G35

Materials allowed: A dictionary from English to any other language is allowed. No other books, notes etc. are allowed and no electronic equipment (calculators, computer, mobile phones etc.) are allowed.

Questions: Christer Bäckström will show up after approx one hour and is otherwise available on phone 0705-840889

Grading: The maximum number of points is 30 and 15 points are required to pass the examination. At least 15 p is required for grade 3, at least 20 p is required for grade 4 and at least 25 p is required for grade 5.

Results: When the exams are graded there will be an opportunity to see the exams and discuss the result with the examiner (this is called a *tentavisning* in swedish). When and where this will happen will be announced on the course homepage as soon as the grading is finished.

Please observe the following:

- Use only one side of each paper.
- Each problem must be solved on a separate paper (or several papers, if necessary. Subproblems of a problem (a, b, c etc.) may be solved on the same page.
- Properly justify all your answers. If you give only an answer without justification, you may get zero points even if the answer is correct.
- Make sure your answers are readable.
- Try to leave space for comments on every page.

Good luck!

Problems

- 1. Define the alphabet $\Sigma = \{0,1\}$ and the language $L \subseteq \Sigma^*$ that consists of (6 p) all non-empty strings where every symbol occurs at least three times in a row whenever it occurs. For example, the strings 0000111000001111000 and 111100011100000 are in L, but the strings $\underline{00}$ 11100011 and $\underline{000}$ 100011111 are not in L (the reasons are underlined).
 - (a) Give a regular expression defining L. (3)
 - (b) Draw the transition graph for a DFA that accepts L. (3)

2. Consider the following CFG G over the alphabet $\Sigma = \{a, b, c, \Box, \triangle\}$. (6 p)

$$S \to S \square S \mid S \triangle S \mid A$$
$$A \to a \mid b \mid c$$

- (a) Prove that G is ambiguous. (3)
- (b) Give an equivalent CFG that is not ambiguous. (3)
- 3. Define the language $L=\{0^m10^n20^{m+n}\mid m,n\geq 0\}$ over the alphabet (6 p) $\Sigma=\{0,1,2\}.$
 - (a) Prove that L is not regular. (3)
 - (b) Prove that L is a CFL by providing a CFG for it. (3)
- 4. Consider the mapping reduction \leq_m . Prove or disprove each of the following (6 p) claims:
 - (a) For all languages A, it holds that $A \leq_m A$ (i.e. \leq_m is reflexive). (2)
 - (b) For all languages A and B, if $A \leq_m B$ then $B \leq_m A$ (i.e. \leq_m is (2) symmetric).
 - (c) For all languages A, B and C, if $A \leq_m B$ and $B \leq_m C$ then $A \leq_m C$ (2) (i.e. \leq_m is transitive).
- 5. Prove that the following problem is NP-complete. (6 p)

The 0/1 Integer Program Feasability (0/1-IPF) problem takes a set of m inequalities over n variables (x_1, \ldots, x_n) on the following form as input

where all constants $(a_{i,j} \text{ and } b_i)$ are integers and the variables can only have value 0 or 1. The problems is to decide if there is an assignment of values to the variables x_1, \ldots, x_n such that all m inequalities hold simultaneously. (Hint: There is a straightforward reduction from **3SAT** to **0/1-IFP** where n is the number of variables and m the number of clauses of the **3SAT** instance.)