Försättsblad till skriftlig tentamen vid Linköpings Universitet

(fylls i av ansvarig)

	(Tyris I av alisvarig)	
Datum för tentamen	201-01-07	
Sal	TER4 08-12	
Tid		
Kurskod	TDDD65	
Provkod	TEN1	
Kursnamn/benämning	Introduction to the Theory of	
	Computation	
Institution	IDA	
Antal uppgifter som	7	
ingår i tentamen		
Antal sidor på tentamen	4	
(inkl. försättsbladet)		
Jour/Kursansvarig	Tommy Färnqvist	
Telefon under skrivtid	0704 547668	
Besöker salen ca kl.	09:30	
Kursadministratör	Madeleine Häger Dahlqvist,	
(namn + tfnnr + mailadress)	282360, madha@ida.liu.se	
Tillåtna hjälpmedel	Ordbok (från engelska till valfritt språk)	
Övrigt		
(exempel när resultat kan ses på		
webben, betygsgränser, visning,		
övriga salar tentan går i m.m.)		

LINKÖPINGS TEKNISKA HÖGSKOLA INSTITUTIONEN FÖR DATAVETENSKAP Gustav Nordh

TDDD65 Introduction to the Theory of Computation Examination, Monday, 2013-01-07

Material allowed: An English dictionary (to any language) is allowed. Other material (like books,

lecture notes, own notes etc.) and electronic equipment (computers, calculators,

mobile phones etc.) is not allowed.

Questions: Tommy Färnqvist, 0704 547668, will appear in the examination room around

1.5 hours after the start of the exam

Grading There are 7 problems giving max 20 points. To pass you need 10 points. The

lower bounds of points for the grades 3,4,5 are as follows: 3:10, 4:14, 5:17.

Results An announcement will be posted at the course homepage

 $http://www.ida.liu.se/\sim TDDD65$ approx. one week after the exam with information on where you can look at your graded exam and discuss the result

with the examiner.

Please observe the following:

- Solutions to different problems should be placed one-sided on separate page(s).
- Justify your answers properly: missing or insufficient explanations will result in reduction of points.
- Be sure that your answers are readable.
- Leave space for comments.

Good luck!

1. Recall that kSAT is the problem of checking the satisfiability of kCNF-formulas, i.e., checking (5 p) the satisfiability of conjunctions of clauses with (at most) k literals. For example,

$$(x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

is a satisfiable 3CNF-formula, and

$$(x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2) \land (x_1 \lor \overline{x_2})$$

is an unsatisfiable 2CNF-formula.

- (a) Briefly explain why 3SAT is in NP. (1)
- (b) Give a polynomial-time mapping reduction from 4SAT to 3SAT. (4)
- 2. Provide a regular expression for the language over $\{0,1\}$ consisting of all strings that are (2 p) the binary representation of even natural numbers.
- 3. Invent a simple context-free grammar that is ambiguous and prove that it is indeed ambiguous. (2 p) guous.
- 4. Consider the language L (over the alphabet $\Sigma = \{a, b, c\}$) defined as $\{cccca^{2n}b^nacc \mid n \geq 0\}$. (4 p) Use the pumping lemma to prove that L is nonregular.
- 5. Consider the languages A, B, and C, where A is a regular language, B is not Turing recognizable, and C is Turing recognizable but not decidable. Given the following mapping reductions:
 - $A \leq_m F$,
 - $F \leq_m B$,
 - $B \leq_m D$,
 - $C \leq_m B$,
 - $E \leq_m C$, and
 - $E \leq_m A$,

what can you conclude about the decidability of the languages D, E, and F? More specifically for each of D, E, and F answer whether it is decidable, undecidable, or whether the information given is not enough to draw a conclusion.

6. The NFA ϵ $N = (Q, \Sigma, \Delta, S, F)$ is defined as follows:

$$Q = \{1, 2, 3, 4, 5\}$$
 $\Sigma = \{a, b\}$ $S = \{1\}$ $F = \{5\}$

(2 p)

with the transition function Δ given by

-	ϵ	a	b
$\rightarrow 1$	Ø	{3}	$\{1, 2, 3\}$
2	Ø	{3} {3}	{5}
3	{4}	Ø	Ø
4	Ø	{3}	{2}
$5\mathrm{F}$	Ø	$\{3, 4\}$	{5}

Using the standard method, construct an equivalent DFA M.

7. (2 p)

- (a) Assume that a proof of P = NP is discovered. Give one likely important consequence (1) of such a proof that has an impact on the everyday life of people.
- (b) Assume that a proof of $P \neq NP$ is discovered. Give one likely important consequence (1) of such a proof that has an impact on the everyday life of people.