| Information page for written
- examinations at Linkoping University

Examination date 2019-08-31
Room (1) TERZ! 1(’ l
Time 14-18

Edu. code TDDD56
Module TEN1

Multicore and GPU Programming (Multicore- och
GPU-Programmering)
Written examination (Skriftlig examination)

Edu. code name
Module name

Department IDA

Number of questions in

the examination 8

Teacher

responsible/contact Christoph Kessler (070-3666687, 013-282406), visiting ca. 16:00, if possible,
person during the exam |Ingemar Ragnemalm (070-6262628), via phone.,

time

Contact mfmber during 013-282406

the exam time

Visit to the examination 1600

room approximately

Name and contact details
to the course Veronica Kindeland Gunnarsson, IDA, 013-285634,
administrator veronica.kindeland.gunnarsson @liu.se

(name + phone nr + mail)

Equipment permitted |Engelsk ordbok / Dictionary from English to your native language.

Other important

. . See the general instructions on the first page.
information

Number of exams in the
bag

LinkOpings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDDS56
Multicore and GPU Programming

31 aug 2019, 14:00-18:00, TER2

Jour: Christoph Kessler (070-3666687, 013-282406), visiting ca. 16:00 if possible.
Ingemar Ragnemalm (070-6262628), for Questions 5-7, by phone only.

Hjilpmedel / Admitted material:
— Engelsk ordbok / Dictionary from English to your native language

General instructions

o This exam has 8 assignments and 4 pages, including this one.
Read all assignments carefully and completely before you begin.

e It is recommended that you use a new sheet of paper for each assignment, because they will be
corrected by different persons.
Sort the pages by assignment, number them consecutively and mark each one on top with your
exam ID and the course code.

¢ You may answer in either English or Swedish. English is preferred because not all correcting
assistants may understand Swedish.

e Write clearly. Unreadable text will be ignored.

¢ Be precise in your statements. Unprecise formulations may lead to a reduction of points.
¢ Motivate clearly all statements and reasoning.

e Explain calculations and solution procedures.

¢ The assignments are not ordered according to difficulty.

e The exam is designed for 40 points. You may thus plan about 5 minutes per point.

e Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.

e There is no exam review session for re-exams. After grading, the exams will be archived and
available for inspection in the IDA student expedition (E-house, upper floor).

1. (6 p.) Multicore Architecture Concepts

(a)

(b)

Define and explain the following technical terms:
i. ILP (instruction-level parallelism) wall (for single-threaded CPUs)
ii. SIMD parallelism
iii. (Cache) cold miss (also known as mandatory miss)
iv. Write-back cache
v. Bus snooping (for coherence)
(Remember that an example is not a definition. Be general and thorough.) (5p)

Why does the MSI coherence protocol, as described in the lecture, guarantee se-
quential (memory) consistency? (1p)

2. (9.5 p.) Design and Analysis of Parallel Algorithms

(a)

(b)

(©)

(d)

Define the term relative parallel efficiency F,q(p) (of a parallel program) as a com-
mented formula depending on the number p of processors used, and give its inter-
pretation (i.e., what does a high or low value of FE,,; mean in practice). (1p)

How could knowing the working set size of a (parallel) algorithm possibly help to
explain the reason of a speedup anomaly observed with a multicore program? (1p)

Define the following two properties:

¢ Critical path length
e Parallel work

of a parallel algorithm, and explain (commented formula) how they are related to
its parallel execution time with p processors through Brent’s Theorem. (2p)

(Hint: Make sure to properly introduce all symbols used and explain their meaning.)

Parallel sorting algorithms

In the lecture on parallel sorting we took a closer look at, among others, the three al-
gorithms fully parallel quicksort, fully parallel mergesort and bitonic sort. Choose
your favorite one among the three algorithms (state which one), describe it with its
main subroutines by well-explained pseudocode and a flowchart diagram, and an-
alyze (i.e., derive by calculation, results given in big-O notation) its parallel time,
parallel work, maximum number of processors used at any time and parallel cost
for a problem size of n elements on an ideal parallel computer (CRCW PRAM)
with an unlimited number of processors. If you need to make further assumptions,
state them carefully. (5.5p)

3. (2.5 p.) Parallel Programming with Threads and Tasks

(a)

(b)

Spin-locks can, as we know, be implemented using the atomic fest-and-set instruc-
tion in the mutex_lock operation. What is the purpose of instead using a test-test-
and-set (TTAS) strategy for acquiring a spin-lock? Explain how it works. (1p)

How does a work-stealing task scheduler work, and for what purpose can it be used?
(1.5p)

4. (4 p.) Non-blocking Synchronization

(a) The operation y = fetch_and_add(p, a) atomically adds to the memory location
pointed to by p the integer value a and returns the (integer) value y that the location
had immediately before the update.

You are given a multicore processor that has no atomic fetch_and_add instruction
but that provides an atomic compare_and_swap (CAS) instruction instead. Write a
software implementation of atomic fetch_and_add using CAS. Explain your solu-
tion. (2p)

(b) Explain the operations Load-Linked (LL) and Store-Conditional (SC), and explain
how the behavior of LL+SC differs from that of CAS if used for atomic updating of
a shared memory location in the context of lock-free shared data structures. If you
had the choice between LL+SC and CAS, which one would you prefer, and why?

(2p)

[In case of questions about the following 3 assignments, ask I. Ragnemalm in the first hand.]

Note from Ingemar Ragnemalm: In all GPU questions, you may use CUDA or OpenCL
style code as you please, but CUDA style is recommended. Exact syntax is not important.

5. (5p) GPU Algorithms and Coding

(a) Describe, using figures and pseudo code in sufficient detail (full CUDA/OpenCL
code is not needed), how matrix multiplication of large matrices can be imple-
mented on the GPU. (GPU kernel code only.) Emphasize the most vital considera-
tions for good performance. (3p)

(b) Describe how an image filter can be efficiently implemented on a GPU. You can not
assume that the filter is separable. Use figures and an overview of the algorithm in
text. (2p)

6. (5p) GPU Architecture concepts

(a) List three different kinds of GPU memory and describe for each their characteristics
in terms of performance, usage and accessibility. CUDA terminology is assumed,
please note if you use OpenCL terminology. (3p)

(b) Some algorithms run faster if you pad a few extra bytes at regular intervals in shared
memory. Explain why. (2p)
7. (5p) GPU Quickies
(a) Suggest a feature that texture memory can do automatically which other kinds of
memory access can not. (1p)

(b) Explain (briefly) why the G80 architecture had significantly higher performance
than earlier GPUs. (1p)

(c) In graphics, data is always input as geometrical shapes. What geometry is usually
used for fragment shader based GPU computing? (1p)

3

(d) OpenGL Compute Shaders has a limitation compared to CUDA or OpenCL. Which
one? (1p)

(e) When using separable filters, one filter is likely to run faster than the other one.
Why? (1p)

8. (3 p.) Optimization and Parallelization

(a) Consider the following loop nest:

for i =1, ..., M
for 3 =1, ..., N-1
A[i1[3] = x+xA[i-1][3-1] + yxA[i-1][J] + zxA[i-1][J+1]);

(1) Would tiling (if applicable) of this loop nest be beneficial for performance if N is
large? Justify your answer. (1p)
(ii) Is tiling of this loop nest (e.g. with 2 x 2 tiles) applicable here, or would it
change the semantics of the code? Justify your answer. (1p)

(b) Why is it, in general, so hard for C/C++ compilers to statically analyze a given
sequential legacy program and parallelize it automatically? (1p)

Good luck!

