
Linköpings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDD56
Multicore and GPU Programming

25 apr 2019, 14:00–18:00, TER2

Jour: Christoph Kessler (070-3666687, 013-282406), visiting ca. 16:00 if possible.

Ingemar Ragnemalm (070-6262628), visiting ca. 16:00.

Hjälpmedel / Admitted material:

– Engelsk ordbok / Dictionary from English to your native language

General instructions

• This exam has 8 assignments and 5 pages, including this one.
Read all assignments carefully and completely before you begin.

• It is recommended that you use a new sheet of paper for each assignment, because they will be
corrected by different persons.
Sort the pages by assignment, number them consecutively and mark each one on top with your
exam ID and the course code.

• You may answer in either English or Swedish. English is preferred because not all correcting
assistants may understand Swedish.

• Write clearly. Unreadable text will be ignored.

• Be precise in your statements. Unprecise formulations may lead to a reduction of points.

• Motivate clearly all statements and reasoning.

• Explain calculations and solution procedures.

• The assignments are not ordered according to difficulty.

• The exam is designed for 40 points. You may thus plan about 5 minutes per point.

• Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.

• There is no exam review session for re-exams. After grading, the exams will be archived and
available for inspection in the IDA student expedition (E-house, upper floor).

1



1. (6 p.) Multicore Architecture Concepts

(a) Define and explain the following technical terms:

i. SIMD parallelism
ii. Dennard Scaling

iii. (Cache) capacity miss
iv. Hardware multithreading
v. Last-level cache

(Remember that an example is not a definition. Be general and thorough.) (5p)

(b) Why does the MSI coherence protocol, as described in the lecture, guarantee se-
quential (memory) consistency? (1p)

2. (9 p.) Design and Analysis of Parallel Algorithms

(a) How could knowing the working set size of a (parallel) algorithm possibly help to
explain the reason of a speedup anomaly observed with a multicore program? (1p)

(b) Define the following two properties:

• Critical path length
• Parallel work

of a parallel algorithm, and explain (commented formula) how they are related to
its parallel execution time with p processors through Brent’s Theorem. (2p)
(Hint: Make sure to properly introduce all symbols used and explain their meaning.)

(c) (6 p.) Finding the roots of a parallel forest
A parallel binary forest is a large shared array F of N elements of the type

struct treeelem {
struct treeelem *leftchild, *rightchild; // given as input
struct treeelem *root; // to be computed
struct treeelem *parent; // auxiliary pointer, not given
// ... further entries

} F[N];

As known from sequential computing, a forest contains (usually, several) trees.
Each node has at most one parent node; the nodes without parent are called the
roots of the forest. The forest nodes are stored in arbitrary order in the array F. The
child pointers are given as input; for leaf nodes the child pointers are NULL. Each
node belongs to one tree, which is uniquely determined by (the address of) its root
node. The task is to calculate, for each node, a pointer root to the root of the tree
that it belongs to (see Figure 1, shown for node v).

i. Develop a parallel algorithm for finding the roots of the N forest nodes in par-
allel time O(logN) on a CREW (Concurrent Read, Exclusive Write) PRAM
with N processors.

2



Figure 1: Forest example. The given pointers to the children are shown (solid arrows). The
pointer root is to be computed for each node; it is shown here for node v only (dashed arrow).

(Hint: Work in two steps:
1. Use the auxiliary pointers parent and show how to calculate them quickly
in parallel for all elements as a first step, so that for each non-root node its
parent pointer now points to its direct parent node in the forest, and for each
root node its parent pointer should be NULL.
2. Now develop an efficient method to calculate the root pointers with the
help of the parent pointers. You might use a technique known from the
lecture.)
Show and explain the resulting pseudocode. (3.5p)

ii. Analyze the algorithm for its asymptotic parallel time, parallel work and par-
allel cost (each as a formula in N , using Θ() notation). Explain. (1.5p)

iii. Explain why your algorithm matches the CREW constraint for the shared mem-
ory accesses, i.e., where concurrent read is used in the algorithm and why con-
current write access does not occur for any memory location. (1p)

3. (3 p.) Parallel Programming with Threads and Tasks

(a) What does thread pinning mean? (1p)

(b) Spin-locks can, as we know, be implemented using the atomic test-and-set instruc-
tion in the mutex lock operation. What is the purpose of instead using a test-test-
and-set (TTAS) strategy for acquiring a spin-lock? Explain how it works. (1p)

(c) How does a work-stealing task scheduler work? (1p)

4. (4 p.) Non-blocking Synchronization

(a) The operation y = fetch and add(p, a) atomically adds to the memory location
pointed to by p the integer value a and returns the (integer) value y that the location
had immediately before the update.
You are given a multicore processor that has no atomic fetch and add instruction
but that provides an atomic compare and swap (CAS) instruction instead. Write a
software implementation of atomic fetch and add using CAS. Explain your solu-
tion. (2p)

3



(b) Explain the operations Load-Linked (LL) and Store-Conditional (SC), and explain
how the behavior of LL+SC differs from that of CAS if used for atomic updating of
a shared memory location in the context of lock-free shared data structures. If you
had the choice between LL+SC and CAS, which one would you prefer, and why?
(2p)

[In case of questions about the following 3 assignments, ask I. Ragnemalm in the first hand.]

Note from Ingemar Ragnemalm: In all GPU questions, you may use CUDA or OpenCL
style code as you please, but CUDA style is recommended. Exact syntax is not important.

5. GPU Algorithms and Coding

(a) Describe, using figures and pseudo code in sufficient detail (full CUDA/OpenCL
code is not needed), how matrix multiplication of large matrices can be imple-
mented on the GPU. (GPU kernel code only.) Emphasize the most vital considera-
tions for good performance. (3p)

(b) The following code implements bitonic merge sort sequentially on CPU.

void bitonic_cpu(unsigned int *data, int N)
{

unsigned int i,j,k;

printf("CPU sorting.\n");

for (k=2;k<=N;k=2*k) // Outer loop, double size for each step
{
for (j=k>>1;j>0;j=j>>1) // Inner loop, half size for each step
{

for (i=0;i<N;i++) // Loop over data
{

int ixj=iˆj; // Calculate indexing!
if ((ixj)>i)
{

if ((i&k)==0 && data[i]>data[ixj])
exchange(&data[i],&data[ixj]);

if ((i&k)!=0 && data[i]<data[ixj])
exchange(&data[i],&data[ixj]);

}
}

}
}

}

Describe how this can be ported to GPU code. (2p)

4



6. GPU Architecture concepts

(a) List three different kinds of GPU memory and describe for each their characteristics
in terms of performance, usage and accessibility. CUDA terminology is assumed,
please note if you use OpenCL terminology. (3p)

(b) Why can coalescing improve performance? How can you take advantage of coa-
lescing for an algorithm with a non-coalesced memory access pattern? (2p)

7. GPU Quickies

(a) In what way(s) is a texturing unit more than just another memory? (1p)

(b) Explain (briefly) why the G80 architecture had significantly higher performance
than earlier GPUs. (1p)

(c) In graphics, data is always input as geometrical shapes. What geometry is usually
used for fragment shader based GPU computing? (1p)

(d) Compare GPU computing using OpenGL Compute Shaders or Vulcan. (1p)

(e) Why can an image filter be accelerated using separable filters? (1p)

8. (3 p.) Optimization and Parallelization

(a) Consider the following loop nest:

for i = 1, ..., M
for j = 1, ..., N-1

A[i][j] = x*A[i-1][j-1] + y*A[i-1][j] + z*A[i-1][j+1];

Would it be correct to apply loop interchange to this loop nest? Justify your answer
(dependence-based argument). (1p)

(b) Give a sufficient condition (dependence based argument) for that a loop’s iterations
can be executed in parallel. (1p)

(c) Why is it, in general, so hard for C/C++ compilers to statically analyze a given
sequential legacy program and parallelize it automatically? (1p)

Good luck!

5


