
Linköpings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDD56
Multicore and GPU Programming

11 jan 2019, 14:00–18:00, U2, T2

Jour: Christoph Kessler (070-3666687, 013-282406), visiting ca. 16:00 if possible.

Ingemar Ragnemalm (070-6262628), visiting ca. 16:00.

Hjälpmedel / Admitted material:

– Engelsk ordbok / Dictionary from English to your native language

General instructions

• This exam has 8 assignments and 5 pages, including this one.
Read all assignments carefully and completely before you begin.

• It is recommended that you use a new sheet of paper for each assignment, because they will be
corrected by different persons.
Sort the pages by assignment, number them consecutively and mark each one on top with your
exam ID and the course code.

• You may answer in either English or Swedish. English is preferred because not all correcting
assistants may understand Swedish.

• Write clearly. Unreadable text will be ignored.

• Be precise in your statements. Unprecise formulations may lead to a reduction of points.

• Motivate clearly all statements and reasoning.

• Explain calculations and solution procedures.

• The assignments are not ordered according to difficulty.

• The exam is designed for 40 points. You may thus plan about 5 minutes per point.

• Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.

• We expect to have the exam corrected by ca. 25 january. An exam review session around end of
january will be announced on the course homepage.

1



1. (6 p.) Multicore Architecture Concepts

(a) Define and explain the following technical terms:

i. MIMD parallelism
ii. Hardware multithreading

iii. Last-level cache
iv. False sharing
v. Heterogeneous multicore system

(Remember that an example is not a definition. Be general and thorough.) (5p)

(b) Why does the MSI coherence protocol, as described in the lecture, guarantee se-
quential (memory) consistency? (1p)

2. (9 p.) Design and Analysis of Parallel Algorithms

(a) Define the following two properties:

• Critical path length
• Parallel work

of a parallel algorithm, and explain (commented formula) how they are related to
its parallel execution time with p processors through Brent’s Theorem. (2p)
(Hint: Make sure to properly introduce all symbols used and explain their meaning.)

(b) Exclusive Parallel Prefix Sums and Skeleton Programming (3p)
In the lectures we derived several parallel algorithms for the prefix-sums problem.
We distinguish between inclusive and exclusive prefix sums.
The inclusive prefix-sums problem for an array x of N elements consists in com-
puting an array y of N elements with

yi =
i∑

j=0

xj for i = 0, ..., N − 1.

The exclusive prefix-sums problem for an array x of N elements consists in com-
puting an array y of N elements with

yi =
i−1∑
j=0

xj for i = 0, ..., N − 1.

(i) Describe a parallel (EREW or CREW PRAM) algorithm for computing inclusive
prefix-sums in parallel time O(logN) with N processors, and explain (calculation)
why it has logarithmic time complexity. (1.5p)
(ii) Exclusive parallel prefix sums can be computed easily from inclusive parallel
prefix sums—How?
Express the resulting parallel computation of exclusive prefix-sums as pseudocode
using suitable (SkePU-like) skeletons and suitable data structures. (1.5p)

2



(c) Parallel Memory Compaction in Garbage Collection (4p)
Given is a shared heap for linked list items, organized as shared array A of N list
items:

struct listitem {
struct element {...} data;
struct listitem *next;
int reachable; // auxiliary field for garbage collection, given
int newindex; // auxiliary field for garbage collection

} A[N]; // shared parallel array of N list items

Some programming languages offer automatic memory management for the heap,
i.e., list items need not be freed explicitly. Instead, the language’s runtime sys-
tem (e.g., the Java Virtual Machine) now and then runs a garbage collection pass
that scans all heap elements and frees those that are no longer reachable from live
pointer variables residing on the stack (such as local pointer variables) or from
global pointer variables.
A garbage collection pass starts with marking all elements (by setting reachable
to 1 or 0) whether they are reachable from live pointer variables or not. Assume for
simplicity that this phase has already been done, i.e., reachable is 1 for reachable
list items, and 0 for the others.

Develop a parallel (PRAM) algorithm for N processors that in time O(logN) com-
pacts the heap, i.e., moves all k reachable elements ”to the left” in A, i.e., they are
then stored consecutively at their new index in A[0 : k − 1], see the figure. (For
now, don’t worry about fixing the next pointers).
(Hint: Initialize, for each list item A[i], its newindex field to a suitable value
(which one? It should depend on whether A[i] is reachable or not). Then ap-
ply a certain fundamental parallel operation from the lecture (which one?) over
the newindex values to determine, for each list item A[i], the overall number of
reachable list items in A[0 : i − 1], which, in the case of a reachable A[i], will be
just the new index position for A[i] that we are looking for. Now only one step is
missing...)
Show and explain the pseudocode, and analyze its parallel time, work and cost,
and the parallel speedup over a straightforward sequential compaction algorithm
(asymptotic notation in all cases; state which PRAM model variant you assume).
(4p)

Bonus question (+1p, provided that the main question was solved properly):
Explain how to extend this parallel algorithm to also fix the next pointers properly
when doing the compaction.
(Hint: If a list item is reachable, then its list successor (next) element is also
reachable.)

3



3. (3 p.) Parallel Programming with Threads and Tasks

(a) What does thread pinning mean? (1p)

(b) What is the purpose of back-off strategies in mutex-lock implementations? (1p)

(c) How does a work-stealing task scheduler work? (1p)

4. (4 p.) Non-blocking Synchronization

(a) The operation y = fetch and add(p, a) atomically adds to the memory location
pointed to by p the integer value a and returns the (integer) value y that the location
had immediately before the update.
You are given a multicore processor that has no atomic fetch and add instruction
but that provides an atomic compare and swap (CAS) instruction instead. Write a
software implementation of atomic fetch and add using CAS. Explain your solu-
tion. (2p)

(b) Explain the operations Load-Linked (LL) and Store-Conditional (SC), and explain
how the behavior of LL+SC differs from that of CAS if used for atomic updating of
a shared memory location in the context of lock-free shared data structures. If you
had the choice between LL+SC and CAS, which one would you prefer, and why?
(2p)

[In case of questions about the following 3 assignments, ask I. Ragnemalm in the first hand.]

5. GPU Algorithms and Coding (5p)

(a) Describe, with figures and pseudo code, how to apply an optimized convolution
filter on a color image with a GPU, using a convolution kernel like the one below
or similar, possibly larger. Detailed code is not demanded, but vital considerations
for performance and correct results should be included. You should not expect the
kernel to be separable. (3p)

1

4

6

4

1

4

16

24

16

4

6

24

36

24

6

4

16

24

16

4

1

4

6

4

1

/256

(b) A histogram is an array h that records for each possible (integer) value the number
of its occurrences in a large set of integers, e.g., an array a. It can be computed like
this:

for all elements i in a[] do
h[a[i]] += 1

4



Write code (close to actual code) for running this algorithm with good performance
on a GPU (e.g. using CUDA or OpenCL). (2p)

6. GPU Architecture concepts (5p)

(a) In order to get the best performance from shared memory, what should the access
pattern be? Clarify with a figure, including how to improve a bad access pattern.
(2p)

(b) Some image filters are separable. Describe how and why this works and give an
example of a separable filter. This has potential to improve performance. Why?
(2p)

(c) A typical case of separable filter is to split a filter into one horizontal and one vertical
filter, often of the same size. However, the two parts may each run with significantly
different performance, one much faster than the other. Suggest a likely reason why
this could happen. (1p)

7. GPU Quickies (5p)

(a) What do you need to do to get coalesced memory access? (1p)

(b) GPUs have evolved around the needs of graphics applications. Give an example
feature, apart from shaders and multiple threads, that was added for the needs of
graphics which is valuable for GPU computing. (1p)

(c) Texture access provides two unique features that we otherwise do not have. Name
one, and describe with a brief sentence. (1p)

(d) In GPU Computing using the graphics pipeline, in what stage are the computations
usually carried out? (1p)

(e) Compare OpenCL and Compute Shaders in terms of portability. You should know
at least one strong point of each. (1p)

8. (3 p.) Optimization and Parallelization

(a) Consider the following loop nest:

for i = 1, ..., M
for j = 1, ..., N-1

A[i][j] = x*A[i-1][j-1] + y*A[i-1][j] + z*A[i-1][j+1];

Would it be correct to apply loop interchange to this loop nest? Justify your answer
(dependence-based argument). (1p)

(b) Give a sufficient condition (dependence based argument) for that a loop’s iterations
can be executed in parallel. (1p)

(c) Why is it, in general, so hard for C/C++ compilers to statically analyze a given
sequential legacy program and parallelize it automatically? (1p)

Good luck!

5


