Link6pings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDD56
Multicore and GPU Programming

9 apr 2015, 14:00-18:00, TER2

Jour: Nicolas Melot (073-7033860), visiting ca. 16:00.
Christoph Kessler (070-3666687), on travel, by phone only.
Ingemar Ragnemalm (070-6262628), visiting ca. 16:00.

Hja lpmedel / Admitted material:
— Engelsk ordbok / Dictionary from English to your native language

General instructions

e This exam has 9 assignments and 5 pages, including this one.
Read all assignments carefully and completely before you begin.

e [t is recommended that you use a new sheet of paper for each assignment, because they will be
corrected by different persons.
Sort the pages by assignment, number them consecutively and mark each one on top with your
exam ID and the course code.

e You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

e Write clearly. Unreadable text will be ignored.

e Be precise in your statements. Unprecise formulations may lead to a reduction of points.
e Motivate clearly all statements and reasoning.

o Explain calculations and solution procedures.

o The assignments are not ordered according to difficulty.

e The exam is designed for 40 points. You may thus plan about 5 minutes per point.

e Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.

e An exam review session will be announced on the course homepage.

1. (5 p.) Multicore Architecture Concepts

(a) How do SIMD (vector) instructions work (in hardware)? What kind of parallelism
do they exploit, for what kind of computations can they boost processor perfor-
mance, and what are the conditions for their proper usage on the programmer’s (or
compiler’s) side? (2p)

(b) Define and explain the following technical terms:

1. Dennard Scaling
ii. Sequential (memory) consistency
iii. Heterogeneous multicore system

(Remember that an example is not a definition. Be general and thorough.) (3p)

2. (4 p.) Parallel Programming with Threads and Tasks

(a) What does thread pinning mean, and what is its purpose? (2p)

(b) How does programming with futures work? (2p)

3. (7.5 p.) Non-blocking Synchronization

(a)

(b)

(©

Name 2 problems of lock-based synchronization that are removed by non-blocking
synchronization. (1p)

An ordered linked list (here, for integers) uses list items of the following type:

struct elem {
int wvalue;
struct elem *next;

}

Pointer variable head points to the first list element. Insertion of a new element
with value v 1s done by searching for v and inserting a new list element e for v
after the element where the search ended. As a simplification we assume that the
list always contains at least one element, namely an artificial dummy element with
value —oo as the first element in the list. We also assume for simplicity that no
remove operations Occur.

struct elem *e = (struct elem *x)malloc(sizeof (struct elem));
struct elem xp = head;
// assume for simplicity that the list contains at least 1 element
// (the first element is a dummy element with value —-infinity)
while (p—->next!=NULL && p->next->value < V)

P = p->next;
e->value = v;
// insert e into the list after p:
e—>next = p->next;
p—>next

€7
Assume that the list elements and the head pointer are stored in shared memory.

1. Show that, without proper synchronization, two concurrent insertions may lead
to an incorrect result. (Give a simple scenario, start with a one-element list).
In general, what is the condition (on concurrently inserted values and list con-
tents) for such a conflict to occur?
Suggest a simple mutex-lock-based solution to make insertion thread-safe. (1.5p)

ii. Use appropriate CAS operations (i.e., no mutex locks) to provide a non-blocking
insert operation (pseudocode). Explain your code.
Explain how possible conflicts between concurrent insert operations are recog-
nized and handled properly by your implementation.
In particular, argue why even in the case of conflicts at least one of the conflict-
ing operations will succeed. (3p)

Explain the operations Load-Linked (LLL) and Store-Conditional (SC), and explain
how the behavior of LL+SC differs from that of CAS if used for atomic updating of
a shared memory location in the context of lock-free shared data structures. If you
had the choice between LL+SC and CAS, which one would you prefer, and why?

(2p)

4. (5.5 p.) Design and Analysis of Parallel Algorithms
Parallel sorting algorithms

In the lecture on parallel sorting we took a closer look at, among others, the three al-
gorithms fully parallel quicksort, fully parallel mergesort and bitonic sort. Choose your
favorite one among the three algorithms (state which one), describe it with its main sub-
routines by well-explained pseudocode and a flowchart diagram, and analyze (i.e., derive
by calculation, results given in big-O notation) its parallel time, parallel work, maximum
number of processors used at any time and parallel cost for a problem size of n elements
on an ideal parallel computer (CRCW PRAM) with an unlimited number of processors.
If you need to make further assumptions, state them carefully. (5.5p)

[In case of questions about the following 3 assignments, ask I. Ragnemalm in the first hand.]

5. (5 p.) GPU Algorithms and Coding
Describe in code/pseudocode and figures how an optimized matrix multiplication for
large matrices can be efficiently implemented on the GPU.

6. (5 p.) GPU Conceptual Questions

(a) Motivate why GPUs can give significantly better computing performance than or-
dinary CPUs. Is there any reason to believe that this advantage will be reduced over
time? (2p)

(b) Compare shared memory, global memory, constant memory and register memory
in terms of performance, usage and accessibility. CUDA terminology is assumed,
please note if you use OpenCL terminology. (3p)

7. (5 p.) GPU Quickies

(a) GPUs have evolved around the needs of graphics applications. Give an example
of a feature, apart from multiple threads, that was added for the needs of graphics
which is valuable for GPU computing. (1p)

(b) In what way(s) is a texturing unit more than just another memory? (1p)
(c) In CUDA, you can use the modifier __device__. What does this signify? (1p)

(d) Some operations can be implemented either as scatter or gather operations. Which
is most suitable for parallel implementation (on GPUs in particular)? Why? (1p)

(e) Compare OpenCL and Compute Shaders in terms of portability. You should know
at least one strong point of each. (1p)

8. (2 p.) Optimization and Parallelization

(a) Consider the following sequential loop:

void foo(float xx, float =xa, int N)

{

int 1i;

x[0] = al0];

for (i1i=0; 1i<N-1; i++)
x[1] = a[i] + x[i+1];

}

Assume that the arrays x and a do not overlap.

Could the iterations of this loop (i.e., without further code restructuring), be run in
parallel? Justify your answer (formal argument).

If yes, suggest a suitable mapping of the iterations to p > 1 parallel threads, and
show why the behavior is the same as with sequential execution.

If not, suggest a semantics-preserving code transformation of this loop that enables
parallelization, and show the resulting source code.

(If you need to make additional assumptions, state them carefully.) (2p)

9. (1 p.) Parallel algorithmic design patterns and High-level parallel programming

Give two main advantages and two main drawbacks of skeleton-based parallel program-
ming. (1p)

Good luck!

