(S~ r-iL v

f’i:‘a Information page for written El¥:
examinations at Linkoping Edyté
University

f‘vﬂ“'

|Examination date ‘20_1 5-01-15

[Room (2) TER3 TERE

|Time |14-18

:ICourse code ’TDDDS 6

‘lExam code ITENI

Course name ggltri;(;r; 2;1;111 C;PU Computing (Multicore- och GPU-
XA SRR Wri%ten examiﬁation (Skriftlig examination)
Department IDA

Number of questions 9

in the examination

|Teacher
[responsible/contact Christoph Kessler (070-3666687, 013-282406), visiting ca. 16:00.
person during the Ingemar Ragnemalm (070-6262628), visiting ca. 16:00.

exam time

Contact number

during the exam time 013-282406

Visit to the

examination room 16:00

approximately

{Name and contact

:Stzlill;sist’(t)r;lz:ourse Asa Kéirrman, asa.karrman @liu.se, 013-285760.
Carita Lilja, carita.lilja@liu.se, 013-281463.

(name + phone nr +

mail)

Equipment - ; .

|permitted Engelsk ordbok / chtlgnary from English to your native language.

._Other p ortm See the general instructions on the first page.

information _ .

Number of exams in
the bag

Linkopings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDDS6
Multicore and GPU Programming

15 jan 2015, 14:00-18:00, TERE, TER3

Jour: Christoph Kessler (070-3666687, 013-282406), visiting ca. 16:00.
Ingemar Ragnemalm (070-6262628), visiting ca. 16:00.

Hji lpmedel / Admitted material:
— Engelsk ordbok / Dictionary from English to your native language

General instructions

e This exam has 9 assignments and 7 pages, including this one.
Read all assignments carefully and completely before you begin.

e It is recommended that you use a new sheet of paper for each assignment, because they will be
corrected by different persons.
Sort the pages by assignment, number them consecutively and mark each one on top with your
exam ID and the course code.

e You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

e Write clearly. Unreadable text will be ignored.

¢ Be precise in your statements. Unprecise formulations may lead to a reduction of points.
e Motivate clearly all statements and reasoning.

e Explain calculations and solution procedures.

o The assignments are not ordered according to difficulty.

e The exam is designed for 40 points. You may thus plan about 5 minutes per point.

» Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.

e An exam review session will be announced on the course homepage.

1. (4 p.) Multicore Architecture Concepts

(a) How do SIMD (vector) instructions work (in hardware)? What kind of parallelism
do they exploit, for what kind of computations can they boost processor perfor-
mance, and what are the conditions for their proper usage on the programmer’s (or
compiler’s) side? (2p)

(b) Define and explain the following technical terms:

1. Weak memory consistency (in a shared memory system)
ii. Heterogeneous multicore system

(Remember that an example is not a definition. Be general and thorough.) (2p)

2. (4 p.) Parallel Programming with Threads and Tasks

(a) What does thread pinning mean, and what is its purpose? (2p)
(b) How does a work-stealing task scheduler work? (2p)

3. (5.5 p.) Non-blocking Synchronization

(a) Name 2 problems of lock-based synchronization that are removed by non-blocking
synchronization. (1p)

(b) Inthe lecture, we considered a fair lock implementation using the atomic Fet chAndIncr
operation:

// two shared counters, statically initialized to 0Q:
shared int ticket = 0; // next waiting ticket to grab
shared int active = 0; // ticket now entitled to enter C§

void acquire () // acquire fair lock:
{
int myticket = FetchAndIncr(&ticket, 1);
while (myticket != active)
i // busy waiting

void release() // release fair lock:
{
active ++;

}

(This implementation assumes a sequentially consistent memory.)

You are given a multicore processor that has no atomic fetch_and._increment instruc-
tion but that has a compare_and_swap (CAS) instruction instead. Rewrite the above
fair lock implementation using CAS such that the behavior is the same. Explain
your solution. (2.5p)

(¢) Explain the operations Load-Linked (LL) and Store-Conditional (SC), and explain
how the behavior of LL+SC differs from that of CAS if used for atomic updating of
a shared memory location in the context of lock-free shared data structures. If you
had the choice between LL+SC and CAS, which one would you prefer, and why?

(2p)

4. (7.5 p.) Design and Analysis of Parallel Algorithms
Karatsuba Polynomial Multiplication (here, just for binary numbers)

Consider the problem of multiplying two very large binary numbers & = (Zq, ..., Tn—1)
and y = (yo, ..., Un—1) given as bitvector arrays.

The (sequential) school method for this is to separately multiply = with each bit y;, shifted
by i positions, and adding up these partial products, resulting in an algorithm with O(n?)
work. But we can do better.

We can write z = £(0-2"/242(® where 29 = (g, ..., 2,,/2-1) and z®) = (2,72, ..., T1),
and y = y® - 27/2 4 y© accordingly. Then,

Ty = (m(l) 2 :E(ﬂ))(y(l) -onf2 4 y(ﬂ))
My on 4 (m(l)y(DJ s w(O)y(lJ) o2 4 (0, 0),

This reduces the problem of one length-n multiplication to, for now, four length-n/2
multiplications.

Now we know that (5,;(1) s 3;(0))@(1) 4 y(O)) - :z:“)y(l) o :E(l)y(ﬂ) + @y 4 m(O)y(O).
Hence,

zWy©® 4 2OLM = (1 4 @)1 L @) _ 7Dy _ 70, O)

which we insert above and obtain
Toy= x(l)y{l) o7 4 ((ﬂ;(l) + m(D))(y(l) + y(O)) _ z(l)y(l) _ ﬂ3(0)9,(0)) Lon/2 z(ﬁ)y(ﬂ)_

Of course we compute M; = z(MyM) and M, = 20y only once, so that we can get
it done with three length-n/2 multiplications and some length-n additions (the latter of
which can be done in linear time). The pseudocode is thus:

Algorithm Multiply (array z[0..n — 1], y[0..n — 1])
returns array z[0..2n — 1]

if n is small (< some constant C') then multiply z, y directly and return zy
else

Set wm), (1) such that z = (1) . 2n/2 + m(m;

Set (@, y(1) such that y = y(1) - 27/2 4 4(0);

M — Multiply(z(D, y1);

My — Multiply(z® | y(0);

Mg — Multiply(w(o) + z(D), y(u) P y(l));

return M; - 2" 4+ (M3 — M — My) - 2M2 + Mo,

}

(a) Which fundamental algorithmic design pattern is used in the Multiply algorithm?
(0.5p)

(b)

(©)

(d)

(e)

Analyze the sequential time complexity of the Multiply algorithm for a problem
size n. Assume that length-n additions and subtractions can be done in time ©(n).
Assume that a direct multiplication for “small” constant n < C (e.g., forn = 1)
takes constant time. (1p)

Identify which calculations could be executed in parallel, and sketch a parallel Mul-
tiply algorithm in pseudocode (shared memory). (1.5p)

Analyze your parallel Multiply algorithm for its parallel execution time, parallel
work and parallel cost (each as a function in n, using big-O notation) for a problem
size m using n processors. Assume that length-n additions and subtractions can be
done in time ©(n) and can be parallelized perfectly across up to n threads. Assume
that a direct multiplication for "small” n < C' (e.g., n = 1) takes constant time,

(A solid derivation of the formulas is expected; just guessing the right answer gives
no points.) (3p)

How would you adapt the algorithm to work for a fixed number p of processors?
‘What will then be its parallel time with p processors? (1.5p)

(Hint: F(n) < kF(n/b) + cn and F(C) € O(1) = F(n) € O(n'*%* 4+ n), for
constants ¢, C' > (.)

(Hint: If not otherwise possible, you may answer the above questions (c¢)—(e) for the
school method, with half the points.)

[In case of questions about the following 3 assignments, ask 1. Ragnemalm in the first hand.]

5. (5 p.) GPU Algorithms and Coding

Write code/pseudo code for computing a 2-dimensional color image filter of some size
(e.g. 5 % 5) in a reasonably optimized way. Clearly describe what optimizations you
do and why. (Full score requires a close-to-real-code solution taking more than one
optimization technique into account.) You may use CUDA-style syntax or OpenCL-style
syntax as you please.

6. (5 p.) GPU Conceptual Questions

(a) Describe how Bitonic Merge Sort can be implemented on a GPU. A figure to clarify
the algorithm is expected. Your solution must be able to handle large data sets (i.e.
100000 items or more). (3p)

(b) Why can coalescing improve performance?
How can you take advantage of coalescing for an algorithm with a non-coalesced
memory access pattern? (2p)

7. (5 p.) GPU Quickies

(a) In CUDA, you can use the modifier __device__. What does this signify? (1p)
(b) What kind of algorithms benefit from using constant memory? (1p)

(c) Compare OpenCL and Compute Shaders in terms of portability. You should know
at least one strong point of each. (1p)

(d) What does a Streaming Multiprocessor correspond to in CUDA and OpenCL, re-
spectively? (1p)

(e) In graphics, data is always input as geometrical shapes. What geometry is usually
used for fragment shader based GPU computing? (1p)

8. (2.5 p.) Optimization and Parallelization

(a) Consider the following sequential loop:

void foo(float =x,

float =a,
{

int N)
int 4
x[0] = a[0];

for (i=1; i<N; i++)

x[1] = ali] + x[i-1];

}

Assume that the arrays x and a do not overlap. Could the iterations of this loop

be run in parallel? Justify your answer (formal argument). (If you need to make
additional assumptions, state them carefully.) (1p)

(b) How does an auto-tuning library generator work? (1.5p)

9. (1.5 p.) Parallel algorithmic design patterns and High-level parallel programming

What is an algorithmic skeleton, and what is the motivation for programming parallel
computers using algorithmic skeletons? (1.5p)

Good luck!

