e Y Forsattsblad till skriftlig

tentamen vid Linkdpings Universitet

(fylls i av ansvarig)

Datum for tentamen 23 aug 2012
Sal TER]1

Tid 14-18
E{ursk«id‘ TDDD56
Provkod TEN1

Kursnamn/benimning

Multicore and GPU Programming

Institution IDA

Antal uppgifter som 8

ingdr i tenfamen

Antal sidor pa tentamen 5

(inkl. forsittsbladet)

Jour/Kursansvarig Christoph Kessler, 1. Ragnemalm
Telefon under skrivtid 0703-666687 070-6262628
Besoker salen ca Kl. 16:00 | |

Kursadministrator Gunilla Mellheden, 013-282297 e.

(namn + tfonr + mailadress)

0705-979044, gunme@jida.liu.se

Tillatna hjilpmedel

Engelsk ordbok, minirdknare

Ovrigt
(exempel nir resultat kan ses pa

webben, betygsgrinser, visning,
dvriga salar tentan gir i m.m.)

Linkopings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDD56
Multicore and GPU Programming

23 aug 2012, 14:00-18:00 TER1

Jour: Christoph Kessler (070-3666687, 013-282406), visiting ca. 16:00.
Ingemar Ragnemalm (070-6262628)

Hjilpmedel / Admitted material:
~ Engelsk ordbok / Dictionary from English to your native language

General instructions

» This exam has 8 assignments and 4 pages, including this one.
Read all assignments carefully and completely before you begin.

o It is recommended that you use a new sheet of paper for each assignment, because they will be
corrected by different persons.
Sort the pages by assignment, number them consecutively and mark each one on top with your
exam ID and the course code.

e You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

e Write clearly. Unreadable text.will be ignored.

» Be precise in your statements. Unprecise formulations may lead to 2 reduction of points.
» Motivate clearly all statements and reasoning.

o Explain calenlations and solution procedures.

¢ The assignments are not ordered according to difficulty.

¢ The exam is designed for 40 points. You may thus plan about 5 minutes per point.

s Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.

Students in international master programs and exchange students will receive ECTS grades. Due
to the anonymization of written exam correction, BCTS grades will be set by one-to-one trans-
iation from swedish grades (5=A, 4=B, 3=C, U=FX), according to the regulations by LinkGping
upiversity.

1. (7 p.) Multicore Architecture Concepts

(a) There are three main technical limits that prevent a further significant increase of
single-thread performance, which finally led to the development of multicore archi-
tectures. Name and explain two of these limits. (2p}

(b) Define and explain the following technical terms:
i. SIMD instructions
ii. Symmeitric multiprocessor (SMP)
_iii. Hardware multithreading
iv. Bus snooping
v. Sequential (nemory) consistency

(Remember that an example is not a definition. Be general and thorough.) (5p)

2. (6p.) Non-bloeking Synchronization

(2) Name 2 problems of lock-based synchronization that are removed by non-blocking
synchronization. (1p)

(b) A bounded push buffer is a data structure consisting of an array B dimensioned for
a capacity of N elements and an unsigned integer counter fop, initially 0, which
indicates the next free insert position at index fop. B and fop reside in shared
emory. - :

A number of threads push elements into the buffer concurrently. Use the atomic
compare-and-swap (CAS) instruction to implement the operation push, such that a
call push(e) atomically inserts an element e at the current top position. If a thread
tries to push to a full buffer, push returns an error code. The application guarantees
that not more than MAXINT —1 push operations will be performed in total, so that
the counter top will never overflow.

Use C or equivalent pseudocode. Make clear which of your variables are shared
and which are thread-local.

Explain your code! '

In particular, explain what CAS does and what its parameters mean.

Explain why, with your solution, concurrent push operations can not lead to “gaps”
or lost entries in the buffer. (4p)

(c) What is the ABA problem (in the context of CAS operations)? (1p)

3. (8 p.) Design and Analysis of Parallel Algorithms

(2) Give an example of a speedup anomaly that may occur on a multicore computer,
and explain its technical cause. (1p) ‘

Algorithm FFT (array z{0..n — 1])
returns array y[0..n — 1}

{

}

if n = 2 then FFT(n):

y[0] « «[0] + z1]; y[i] « =[0] - =[1];

else

allocate temporary arrays u, v, 7, §
of n/2 elements each;

for [in { 0.. n/2-1} de
ulf] & z{l] + zll +n/2];
v[l] « whx (2[l] - z[l + n/2]);

od

r FFT (ul0.n/2 —1]);

§ «— FFT (v[0..n/2 — 1]); FFT{n/32) FFT(n/2)

foriin { 0. n-1} do

if 1 is even then y[i] — r[i/2} f } M
if £ is odd then y[i] — s[(i— 1)/2] f
o ifiis en yli] < s Y i

fi

return y{0..n — 1]

¥p ¥ Yoo Yoz—1 Patz Fnap v Vpez

Figuare 1: The sequential FFT algorithm. -

(b) The Fast-Fourier-Transform (FFT) is a (sequential) algorithm for computing the
Discrete Fourier Transform of an array z of n elernents (usually, complex numbers)
that might represent sampled input signal values, and a special complex nuwmber
w that is a nth root of unit, ie., w™ = 1. The result y is again an array of n
elements, now representing amplitude coefficients in the frequency domain for the
input signal z. Assume for simplicity that n is a power of 2. A single complex
addition, subtraction, multiplication and copy operation each take constant time.
Figure 1 shows the pseudocode of a recursive formulation of the FFT algorithm and
gives a graphical illustration of the data flow in the algorithm.

1.

il.

il

iv.

Which fundamental algorithmic design pattern is used in the FFT algoritbm?
(0.5p)

Identify which calculations could be executed in parallel, and sketch a parallel
FFT algorithm for n processors in pseudocode (shared memory). (0.5p)
Analyze your parallel FFT algorithm for its parallel execution time, parallel
work and parallel cost (each as a function in n, using big-O notation) for a
problem size n using n processors. (A solid derivation of the formulas is ex-
pected; just guessing the right answer gives no points.) (2.5p)

Is your parallel FFT algorithm work-optimal? Justify your answer (formal ar-
gument). (1p)

How would you adapt the algorithm to work for a fixed number p < n of
processors? What will then be its parallel time with p processors? (1.5p)

How would you choose p ideally to make the adapted algorithm asymptotically
cost-optimal? (1p)

{In case of questions about the following 3 assignments, ask I. Ragnemalm in the first hand. |

4. (5 p.) GPU Algorithms and Coding
Describe in pseudocode and figures how an optimized matrix multiplication works on the
GPU.

5. (5 p.) GPU Conceptual Questions

(a) List three different kinds of GPU memory and describe for each their characteristics
in terms of performance, usage and accessibility. CUDA terminology is assumed,
please note if you use OpenCL terminology. (3p)

(b) If you have a modern GPU with 512 cores, how much speedup can you expect
to get? Yes, it depends on the algorithms, but in what way? Make a reasonable
assessment and back that with hardware and algorithm based arguments. (2p)

6. (5 p.) GPU Quickies
(a) In graphics, data is always input as geometrical shapes. What geometry is usnally

used for shader-based GPU computing?

(b) What concept in CUDA corresponds to a thread processor in the GPU architecture?
(1p)
{c) How can pinned (page-locked) CPU memory improve performance? (1p)

(d) List three different kinds of hardware that OpenCL. runs on. (Similar systemns by
different vendors count as one.) (1p)

(e) For what kind of problems are shader-based GPU computing most suitable? Give
one specific example. (1p)

7. (2 p.) Optimization and Parallelization

(a) Given its data dependence graph, formulate a sufficient (safe) condition whether a
sequential loop can be executed in parallel. (1p)

(b) Why is it, in general, so hard for C/C++ compilers to statically analyze a given
sequential legacy program and paralielize it automatically? (ip)

8. (2 p.) Parallel algorithmic design patterns and High-level parallel programming

Give two main advantages and two main drawbacks of skeleton programming.

Good huck!

