Information page for written
examinations at Linkoping University

Examination date 2019-04-26

Room (1) TER2(1)

Time 14-18

Edu. code TDDDS55

Module TEN1

Edu. code name Compilers and Interpreters (Kompilatorer och interpretatorer)
Module name Written examination (En skriftlig tentamen)
Department IDA

Number of questions in 10

the examination

Teacher

respon&ble!contact Martin Sjsland

person during the exam

time

Contact number during

the exam time +46707567358

Visit to the examination 15:30

room approximately

Name and contact details
to the course
administrator

(name + phone nr + mail)

Veronica Kindeland Gunnarsson 013-28 56 34

. . English dictionary
Equipment permitted Pocket calculator
Other important
information

Number of exams in the
bag

Tentamen /Exam
TDDD55 Kompilatorer och interpretatorer / Compilers and Interpreters

2019-04-26, 14:00 — 18:00

Hjalpmedel / Allowed material:
e Engelsk ordbok / Dictionary from/to English to/from your native language
e Minirdknare / Pocket calculator
General instructions:
e Read the instructions and examination procedures for exams at LiU.
e Read all assignments carefully and completely before you begin.

e You may answer in Swedish or in English.

e Write clearly — unreadable text will be ignored. Be precise in your statements — impre-
cise formulations may lead to reduction of points. Motivate clearly all statements and

reasoning. Explain calculations and solution procedures.

e The assignments are sorted into fundamentals (20p) and an advanced section (max 10p).

— Solve all of the fundamental assignments.

— Choose up to 10p worth of the advanced assignments (there are 6 assignments to
choose from). You are penalized if you answer more than 10p worth of advanced

assignments.

e The exam is designed for 30 points in 240 minutes. You may thus plan 8 minutes per

point.

e Grading: U, 3, 4, 5 resp. Fx, C, B, A.

e The preliminary threshold for passing (grade 3/C) is 15 points, of which 10 points should

be from the fundamentals section.

Fundamentals

1. (6p) Formal Languages and Automata Theory

Consider the language L consisting of all strings w over the alphabet {a, b, c} such that
a string is accepted if it contains the substring ab but not the substring cb. Example of
strings in the language: aabacccc, ccabcab. Examples of strings not in the language:
cbabc, abcba.

(a) (1.5p) Construct a regular expression for L.
(b) (1.5p) Construct from the regular expression an NFA recognizing L.
)

(c) (2.5p) Construct a DFA recognizing L, either by deriving it from the NFA or by
constructing it directly.

(d) (0.5p) Give an example of a formal language that is not context-free.

2. (3p) Compiler Structure and Generators

(a) (1p) What are the advantages and disadvantages of a multi-pass compiler (compared
to an one-pass compiler)?

(b) (2p) Describe briefly what phases are found in a compiler. What is their purpose,
how are they connected, what is their input and output?

3. (5p) Top-Down Parsing

(a) (4.5p) Given a grammar with nonterminals S, X, Y and the following productions:
S =81
§ ::=XY2
S ::=XYE6
X ::=X3
X ::=4
Y ::=X5
Y ::=¢€

where § is the start symbol, 1, 2, 3, 4, 5 and 6 are terminals. (e is the empty string!)
What is/are the problem(s) with this grammar if it is to be used for writing a
recursive descent parser with a single token lookahead? Resolve the problem(s), and
write a recursive descent parser for the modified grammar. (Pseudocode/program
code without declarations is fine. Use the function scan() to read the next input
token, and the function error() to report errors if needed.)

(b) (0.5p) The theory for formal languages and automata says that a stack is required for
being able to parse context-free languages. We have used such a stack, for instance,
in the LL-item pushdown automaton in the lecture on top-down parsing. But where
is the corresponding stack in a recursive descent parser?

4. (6p) LR parsing

Use the SLR(1) tables below to show how the string 1214341 is parsed. You should show,
step by step, how stack, input data etc. are changed during the parsing. Start state is
00, start symbol is S.

Grammar:

1. S = A

2. A ::=1A2

3. | 1B 1

4. | 1 B3

h, B ::= 1A 2

6. | 2 A4

7. | 4

Tables:

Action GOTO

State $ 1 2 3 4 S A B
00 * S02 * * * * 01 %
01 A * * * * * % *
02 * S08 Si12 * S11 * 03 0b
03 * * S04 * * * % %
04 R2 * R2 * R2 * % *
05 * S06 * S07 * * % *
06 R3 * R3 * R3 * % *
o7 R4 % R4 * R4 * % *
08 * S08 812 * Si1 * 09 05
09 * * S10 * * * % *
10 R2 Rb R2 R5 R2 * ok *
11 * R7 * R7 % * % *
12 * S02 * * * * 13 *
13 * * % Si4 * K *
14 * R6 * R6 * * X *

Advanced

Read the general instructions first. You should not answer all of these assignments.

5. (3p) Symbol Table Management

Describe what the compiler — using a symbol table implemented as a hash table with
chaining and block scoped control — does in compiling a statically scoped, block structured
language when it handles:

(a) block entry

(b) block exit

(c) a variable declaration

)

(d) a variable use.

6. (5p) Syntax-Directed Translation

A Pascal-like language is extended with a restartblock statement according to the
following grammar:

<block> = begin <stmt_list> end
<stmt_list> ::= <stmt_list><stmt> |
<stmt> = <assignment> | ... | restartblock
(where “...” represents all other possible kinds of statements). restartblock means
that execution restarts at the beginning of the immediately enclosing block.
Example:
begin
x:=17;
L1: begin
y:=y—42;
if p=4711
L2: then restartblock;
else q:=q-1;
L3: end;
end;

where restartblock at L2 means a jump to L1 (i.e. the beginning of the enclosing block).

(a) (4p) Write a syntax-directed translation scheme, with attributes and semantic rules,
for translating <block>s, and restartblocks inside them, to quadruples. The trans-
lation scheme should be used during bottom-up parsing. You are not allowed to
define and use symbolic labels, i.e. all jumps should have absolute quadruple ad-
dresses as their destinations. You may need to rewrite the grammar. Explain all the
attributes, functions, and instructions that you introduce. State all your assump-
tions. (Since it is a syntax-directed translation scheme, not an attribute grammar,
generation of a quadruple puts it in an array of quadruples and attribute values are
“small” values such as single quadruple addresses.)

4

7.

10.

(b) (1p) What problem would occur in handling of the translation scheme if instead of
restartblock there would be an exitblock statement that jumped to the end of
the immidiately enclosing block (instead of the begin), i.e. to L3 in this example?

(1p) Error Handling

Explain, define, and give examples of using the valid prefix property regarding error
handling.

(2p) Memory management

(a) (1p) What does an activation record contain?

(b) (1p) What are static and dynamic links? How are they used?

(3p) Intermediate Representation

Given the following code segment in a Pascal-like language:

if x=y
then x:=x-10
else while y>10 do
if y<x
then y:=y+1
else y:=func(x)

Translate the code segment into an abtract syntax tree, quadruples, and postfix code.

(3p) Intermediate Code Generation

Divide the following code inte basic blocks, draw a control flow graph, and show as well
as motivate the existing loop(s):

goto L2
Li: x:=x+1
L2: x:=x+1

x:=x+1

if x=1 then goto L1
L3: if x=2 then goto L4

goto Lb
L4: x:=x+1
L5: x:=x+1

if x=4 then goto L3

