
Tentamen/Exam

TDDB44 Kompilatorkonstruktion / Compiler Construction

TDDD55 Kompilatorer och interpretatorer /

Compilers and Interpreters

2016–01–16, 08.00 – 12.00

Hjälpmedel / Allowed material:

• Engelsk ordbok / Dictionary from/to English to/from your native language

• Miniräknare / Pocket calculator

General instructions:

• Read all assignments carefully and completely before you begin

• Note that not every problem is for all courses. Watch out for comments like “TDDD55 only”.

• You may answer in Swedish or in English.

• Write clearly — unreadable text will be ignored. Be precise in your statements — unprecise for-
mulations may lead to reduction of points. Motivate clearly all statements and reasoning. Explain
calculations and solution procedures.

• The assignments are not ordered according to difficulty.

• The exam is designed for 40 points (per course). You may thus plan 6 minutes per point.

• Grading: U, 3, 4, 5 resp. Fx, C, B, A.

• The preliminary threshold for passing (grade 3/C) is 20 points.

1



1. (TDDD55 only - 6p) Formal Languages and Automata Theory
Consider the language L consisting of all strings w over the alphabet {0, 1} such that w

contains 00 and does not contain 11. Examples of strings in the language: 10100100101,
100101. Examples of strings not in the language: 10101, 011010.

(a) (1.5p) Construct a regular expression for L.

(b) (1.5p) Construct from the regular expression an NFA recognizing L.

(c) (2.5p) Construct a DFA recognizing L, either by deriving it from the NFA or by con-
structing it directly.

(d) (0.5p) Give an example of a formal language that is not context-free.

2. (3p) Compiler Structure and Generators

(a) (2p) What are the generated compiler phases and what are the corresponding formalisms
(mention at least 5) when using a compiler generator to generate a compiler?

(b) (1p) Most modern compilers have not just one, but several intermediate representa-
tions(IR). What is the advantage of having more than one IR, and what could be the
drawback?

3. (3p) Symbol Table Management
The C language allows static nesting of scopes for identifiers, determined by blocks enclosed
in braces. Given the following C program:

int m;

int main( void )

{

int i;

// ... some statements omitted

if (i==0) {

int j, m;

// ... some statements omitted

for (j=0; j<100; j++) {

int i;

// ... some statements omitted

i = m * 2;

}

}

}

2



(a) (2p) For the program point containing the assignment i = m * 2, show how the program
variables are stored in the symbol table if the symbol table is to be realized as a hash
table with chaining and block scope control. Assume that your hash function yields
value 3 for i, value 1 for j and m, and value 4 for main.

(b) (0.5p) Show and explain how the right entry of the symbol table will be accessed when
looking up identifier m in the assignment i = m * 2.

(c) (0.5p) After code for a block is generated, one needs to get rid of the information for
all variables defined in the block. Given a hash table with chaining and block scope
control as above, show how to “forget” all variables defined in the current block, without
searching through the entire table.

4. (5p) Top-Down Parsing
Given a grammar with nonterminals A, B, and C, and S, where S is the start symbol, and the
following productions:

1. S ::= A ^ A

2. A ::= A * B

3. | B

4. B ::= C + B

5. | C

6. C ::= a

7. | b

Assume that ^, *, and + are operators.

(a) (1p) What is the associativity (right, left, none) of the operators?

(b) (1p) What is the precedence (relative priority) between the operators?

(c) (2p) Can the grammar be used directly for a recursive-descent parser? Motivate your
answer. If not, rewrite the grammar so that the language it defines can be parsed using
the recursiuve-descent method.

(d) (2p) Write a recursive-descent parser to analyze the language defined by the grammar.
(Pseudocode/program code without declarations is fine. Use the function scan() to read
the next input token, and the function error() to report errors if needed.)

3



5. (TDDD55 only - 6p) LR parsing

(a) (3p) Use the SLR(1) tables below to show how the string a+b+b-b is parsed. You should
show, step by step, how stack, input data etc. are changed during the parsing. Start
state is 00, start symbol is A.

Grammar:

1. A ::= B + B

2. | B - B

3. B ::= C + C

4. | C - C

5. C ::= a

6. | b

Tables:

Action Goto

====== ====

State + - a b $ A B C

----- ------------------- --------

00 * * S04 S05 * 01 02 03

01 * * * * A * * *

02 S06 S07 * * * * * *

03 S08 S09 * * * * * *

04 R5 R5 * * R5 * * *

05 R6 R6 * * R6 * * *

06 * * S04 S05 * * 10 03

07 * * S04 S05 * * 11 03

08 * * S04 S05 * * * 12

09 * * S04 S05 * * * 13

10 * * * * R1 * * *

11 * * * * R2 * * *

12 R3 R3 * * R3 * * *

13 R4 R4 * * R4 * * *

(b) (3p) Explain the concept of conflict in LR parsing — what it is, how it could be handled.

4



6. (TDDB44 - 6p) LR parsing
Given the following grammar G for strings over the alphabet {a,b,p,q} with nonterminals A,
B, and S, where S is the start symbol:

A ::= aAa | bAb | aBb | bBa | p

B ::= aBa | bBb | aAb | bAa | q

S ::= A

Is the grammar G in SLR(1) or even LR(0)? Justify your answer using the LR item sets.
If it is: construct the characteristic LR-items NFA, the corresponding GOTO graph, the
ACTION table and the GOTO table
and show with tables and stack how the string aabqbba is parsed.
If it is not: describe where/how the problem occurs.

7. (5p) Syntax-Directed Translation
A loop statement that combines pre-test and post-test could be described like:

<doubletestloop> ::= WHILE <expr> DO <stmt> UNTIL <expr>;

If the first <expr> evaluates to true then the statement <stmt> is executed. If the second
<expr> then doesn’t evaluate to true the whole <doubletestloop> is executed again.

Write a syntax-directed translation scheme, with attributes and semantic rules, for translating
the <doubletest> statement to quadruples. Assume that the translation scheme is to be used
in a bottom-up parsing environment using a semantic stack. Use the grammar rule above as
a starting point, but it maybe has to be changed.

You are not allowed to define and use symbolic labels, i.e. all jumps should have absolute
quadruple addresses as their destinations. Explain all the attributes, functions, and instruc-
tions that you introduce. State all your assumptions.

8. (6p) Intermediate Code Generation

(a) (3p) Given the following code segment in a Pascal-like language:

if x=y

then x:=x-10

else while y>10 do

if y<x

then y:=y+1

else y:=func(x);

Translate the code segment into an abtract syntax tree, quadruples, and postfix code.

5



(b) (3p) Divide the following code inte basic blocks, draw a control flow graph, and show
as well as motivate the existing loop(s).

L1: x:=x+1

L2: x:=x+1

L3: x:=x+1

if x=1 then goto L5

if x=2 then goto L1

if x=3 then goto L3

L4: x:=x+1

L5: x:=x+1

if x=4 then goto L4

9. (3p) Memory management

(a) (1p) What does an activation record contain?

(b) (2p) What happens on the stack at function call and at function return?

(c) (2p) What are static and dynamic links? How are they used?

10. (TDDB44 only - 6p) Code Generation for RISC etc.

(a) (1.5p) Explain the main similarity and the main difference between superscalar and
VLIW architectures from a compiler’s point of view. Which one is harder to generate
code for, and why?

(b) (1.5p) Explain briefly the concept of software pipelining. Show it with a simple example.

(c) (2p) What is branch prediction and when is it used? Why is this important for pipelined
processors?

(d) (1p) What is a live range? Explain the concept and show a simple example.

11. (TDDB44 only - 3p) Compiler Lab Exercises
Correct and complete labs from the 2015 TDDB44 lab course handed in at the latest December
22, 2015, will give 3 points. State if you think that you have fulfilled the conditions and you
should receive these points.

6


