Forsattsblad till skriftlig tentamen vid
Linképings universitet

Datum for tentamen 2019-06-05

Sal (1) T2(16)

Tid 14-18

Utb. kod TDDD48

Modul TEN1

Utb. kodnamn/benémning Automatisk planering
Modulnamn/benimning Skriftlig tentamen
Institution IDA

Antal uppgifter som ingar i 4

tentamen

Jour/Kursansvarig
Ange vem som bestker salen

Jonas Kvarnstrém

Telefon under skrivtiden

0704-737579

Besoker salen ca klockan

ca 15:00

Kursadministrator/kontaktperson

(namn + tfnr + mailaddress)

Anna Grabska Eklund, ankn. 2362, anna.grabska.eklund @liu.se

Tillatna hjilpmedel

inga

Ovrigt

Antal exemplar i pasen




TDDD48 Automated Planning 2019-06-05

Important Instructions: Read before you begin!

e Though the questions are in English, feel free to answer in Swedish if you prefer!
Det gér bra att skriva pa svenskal

e Dlease, write clearly (block letters if necessary), and use the lined side of the paper
except for diagrams! Checked paper works well for math but tends to make text
difficult to read...

ro

e Clear and comprehensible explanations and motivations are always required. This does
not necessarily mean that each answer should be a long essay. What is important is
that all the relevant facts are present and clearly explained.

e To see if you have succeeded, turn the tables and try to misunderstand.
Specifically, after you write an answer, go back and see if you can creatively misinter-
pret the answer. If so, clarify, clarify, clarify!

e A good way to show your knowledge is to write explanations that can be understood
by someone else who does not already know the correct answer.

If your answer explains a topic well enough that a fellow student could learn some-
thing new from the answer and/or apply it in practice, you have probably succeeded.

Conversely, if we ask how HTNs work, saying that “there are methods and operators
and you construct a tree using patterns and there can be constraints too, and there’s
no goal” does not provide much in terms of useful information, and certainly will not

give you a full score.

e Concrete examples or counterexamples may be useful as part of a motivation. If so,
please make sure you include all relevant information about the example you have
chosen to use. What is relevant naturally depends on how you use the example.

e When asked to provide examples or illustrate something through a planning problem
instance, save time by keeping the example as small as possible.



Notation and Terminology

To avoid unnecessary confusion, we will hint at some of the terminology that you have
hopefully learned during the course. Please be careful to use the correct words!

e Predicate (name/symbol) — at, on, raining

e Object (name/symbol) - A, B, red, truckl, helicopter8, location4
e Variable — truck, location, ?location — in italics or prefixed by “?”
e Atom - at(mytruck, overthere), at(truck, location4), raining

e Ground atom — at(mytruck, overthere), raining

e Fact - typically a ground atom

e Literal — atom or negated atom

e Ground literal

e Formula — combination of atoms using connectives. An atom is also a formula — an
“atomic (indivisible) formula” that does not contain smaller formulas.

e State — a full specification of the “configuration” of the world (to the extent it is mod-
eled in the problem specification)

e Goal formula, goal state, set of goal states, goal fact, ...

e h*(s) - the cost of an optimal plan reaching a goal state from state s



1 General Concepts in Automated Planning

In this question we will use the Sokoban domain and problem instance defined in PDDL in

Appendix A. Please familiarize yourself with these before continuing.

Note: We are discussing the problem instance defined in PDDL, not the graphical illustra-

tion at the beginning of the appendix!

a)

b)

c)

How many states exist for the given Sokoban problem instance, including all states,
both reachable from the initial state and unreachable from the initial state?

Show step by step how to calculate this number given a PDDL problem instance, with
sufficient clarity that we can use your instructions to also compute the number of
states for any other classical planning problem defined in PDDL. (2 points)

In the given Sokoban problem instance, is it true that for all states s reachable from
the initial state, if you reach state s through some sequence and action and then leave
s, you can then (always) return to s again?

If so, motivate clearly. If not, provide a clearly comprehensible counterexample. You
do not have to provide a full formal analysis based on the exact operator definitions;
using your intutions about the Sokoban game is sufficient. (1 point)

Show the three first levels of the forward state space search tree for the given Sokoban
problem instance, where the first level is the initial node and the other two levels are
generated through applying applicable actions.

For each state in the search tree that you illustrate, it is sufficient to specify (1) which
at facts are true, and (2) the value of total-cost. You do not have to include the
unchanging IS-GOAL, IS-NONGOAL or MOVE-DIR facts. You also do not have to include
the clear facts. (2 points)



2 Partial Order Planning

In this question we will use the Gripper domain and problem instance defined in PDDL in
Appendix B. Please familiarize yourself with these before continuing.

You will be required to demonstrate a number of partially ordered plans. Unless we
explicitly say otherwise, you must clearly show the following in each such plan:

o For each action, all preconditions above the action and all effects below the action.
(Or, if you draw the plans horizontally: Preconditions to the left, effects to the right.)

o All other relevant structural features in the plan: precedence constraints (solid ar-
rows), causal links (dashed arrows) and threats.

Simplifying diagrams: If any aspect of a plan structure is not explicitly included in your
diagram, you must explicitly and unambiguously state how to infer what is missing (“if there
is an X with these properties, the plan actually also contains a Y with these other properties,
but this is omitted from the diagram”).

Questions:

a) Show the initial partial plan 7, generated for the given Gripper problem instance by
a typical partial-order causal link planner, such as the PSP planner in the course book
or the planning procedure illustrated during the course lectures. This is the partial
plan that corresponds to the unique first node (“initial node”, “root node”) generated
in the search space. Think carefully about what the very first node is! (2 points)

b) Describe all flaws in the initial partial plan, and indicate the type of flaw. (1 point)

¢) Show all the immediate successors of the initial partial plan. That is, demonstrate
all the different ways in which a standard PSP-like partially ordered planner might
extend 7, in a single step.

For this particular subtask you do not have to illustrate each successor plan graphically.
Instead, you can choose to explain clearly in writing how each successor would be
constructed as a modification of my. However, you still need to indicate all changes
that would be made relative to the initial partial plan, including any new constraints

and relations as discussed above!

You may use lifted successors or ground successors. (2 points)



3 Heuristics

a)

b)

c)

Given the Gripper problem instance from Appendix B: Show at least 4 distinct ground
fact landmarks that are not already true in the initial state.

The landmarks should use at least 2 different predicates. (2 points)

A state transition system, with its three components (S,4,7), can also be seen as a
mathematical graph consisting of nodes and labeled edges, allowing it to be more easily
illustrated as a diagram.

When a relaxation is applied to a planning problem, how can this affect the mathe-
matical graph?

In this question we are not interested in the exact definitions of specific relaxation
techniques such as delete relaxation. We are also not interested in modifications at the
level of the planning problem (such as how action definitions could change). Instead,
we are asking how the nodes and edges could be affected by relaxations in a general
way (addition, removal, other changes).

Describe at least two distinct types of change that can occur. Movitate why such
changes would actually result in relaxations. (2 points)

Define the optimal delete relaxation heuristic. In other words, describe clearly how
an algorithm would compute the heuristic value h'*(s) given a planning domain, a
problem instance and a state s.

You may exemplify using the Gripper domain from Appendix B if this helps you describe
the heuristic more clearly. However, you must still describe a general computation
procedure that works well for arbitrary domains. (2 points)



4 Planning with Incomplete Information

a) Explain the meaning of three types of planning: Fully observable, partially observable
and non-observable. Include sufficient detail for the reader to understand the differ-
ences between these types of planning and the consequences for the planner and plan
executor.

Hints: This is about observations, but (1) who would observe something? (2) What
can or can’t this entity observe? (3) When would (or wouldn’t) such observations be
made? (4) When could the observations be useful and what would they be used for?
(5) What information do you have if you don’t have observations? (2 points)

b) Please define the Stochastic Shortest Path Problem (SSPP), by answering the following
questions.

— To define a classical planning problem instance, we can use a restricted form of
state transition system (S,A,y). A similar form of system can be defined for the
Stochastic Shortest Path Problem. What is the main difference in this system, in
terms of the actual components of the system? What is no longer there, what

replaces it, ...?

_ A solution to the classical planning problem is a sequential plan. How can you
specify a solution to the Stochastic Shortest Path Problem? Clearly explain the
typical solution structure commonly used for both such problems and for other
planning problems that are not fully deterministic.

_ In the classical planning problem, the objective is to find a sequential plan that
starts in a known initial state s, and reaches a state belonging to a known set of
goal states S, often while minimizing the cost of this solution.

We described two possible objectives for the Stochastic Shortest Path Problem.
Describe one of them!

(3 points)



A The Sokoban Domain

Sokoban is a video game played on a board of squares, where the player moves crates
(boxes) around in a warehouse in order to get them to a set of intended storage locations.
The intended locations are not specific to a box: It does not matter which box is at which
storage location. The player can move horizontally or vertically one step at a time, but
cannot move through walls. The player can also push crates horizontally or vertically, also
not through walls.

Tlustrating example. This is not the same
as the problem instance shown in PDDL below!

This domain can be modeled in PDDL as follows. Note that predicate symbols in ALL CAPS
are fixed (not modified by any operator).

(define (domain sokoban-sequential)
(:requirements :typing :action-costs)
(:types thing location direction - object

player stone - thing)

(:predicates (clear ?1 - location)

(at 7t - thing 7?1 - location)

(at-goal ?s - stone)

(I15-GOAL ?1 - location)

(IS-NONGOAL 7?1 - location)

(MOVE-DIR ?from ?to - location ?dir - direction))
(:functions (total-cost) - number)

(:action move
tparameters (?p - player 72from 7to - location ?dir - direction)
:precondition (and (at ?p ?from)
(clear ?7to)
(MOVE-DIR ?from ?to ?dir)
)
reffect (and {not (at ?p ?from))
(not (clear 7to))
(at 7p 7to)
(ctear ?from)

)



(:action push-to-nongoal
:parameters (?p - player ?s - stone
7ppos 7from 7to - location
?dir - direction)
iprecondition (and (at ?p ?ppos)
(at ?s ?from)
(clear ?to)
(MOVE-DIR ?ppos ?from ?dir)
(MOVE-DIR ?7from ?to ?7dir)
(IS-NONGOAL ?to)
)
reffect (and (not (at ?p 7ppos))
(not (at ?s ?from))
(not (clear 7to))
(at ?p ?from)
(at ?s ?7to)
(clear ?ppos)
(not (at-goal 7s))
{increase (total-cost) 1)

)

(:action push-to-goal
:parameters (7p - player ?s - stone
7ppos ?from ?to - location
?dir - direction)
:precondition (and (at ?p ?ppos)
(at ?s ?from)
{clear ?to)
(MOVE-DIR ?ppos ?from ?dir)
(MOVE-DIR ?from ?to ?dir)
(IS-GOAL 7to)
)
reffect (and (not (at 7p 7ppos))
(not (at 7s ?from))
(not (clear 7to))
(at ?p ?from)
(at ?s ?to)
(clear ?ppos)
(at-goal 7s)
(increase (total-cost) 1)

)



A small Sokoban problem instance with 4 directions, 1 player and 7*7=49 locations can be
defined as follows.

;; # is a wall # pos-4-7 - location
;; $ is a box $ pos-5-1 - location
;; @ 1s a player @ pos-5-2 - location
;; . is a destination . pos-5-3 - location

pos-5-4 - location

;0 # HHHE pos-5-5 - location
s #F pos-5-6 - location
1 HHSSOH pos-5-7 - location
; # H# pos-6-1 - location
;0 # # pos-6-2 - location
Jr# . # pos-6-3 - location
;o IR pos-6-4 - location
pos-6-5 - location
(define (problem p©24-microban-sequential) pos-6-6 - location
(:domain sokoban-sequential) pos-6-7 - location
(:objects pos-7-1 - location
dir-down - direction pos-7-2 - location
dir-left - direction pos-7-3 - location
dir-right - direction pos-7-4 - location
dir-up - direction pos-7-5 - location
player-01 - player pos-7-6 - location
pos-1-1 - location pos-7-7 - location
pos-1-2 - location stone-081 - stone
pos-1-3 - location stone-02 - stone
pos-1-4 - location )
pos-1-5 - location (:init
pos-1-6 - location (I5-GOAL pos-3-6)
pos-1-7 - location (IS-GOAL pos-5-6)
pos-2-1 - location (IS-NONGOAL pos-1-1}
pos-2-2 - location (IS-NONGOAL pos-1-2)
pos-2-3 - location (IS-NONGOAL pos-1-3)
pos-2-4 - location (IS-NONGOAL pos-1-4)
pos-2-5 - location (IS-NONGOAL pos-1-5)
pos-2-6 - location (IS-NONGOAL pos-1-6)
pos-2-7 - location (IS-NONGOAL pos-1-7)
pos-3-1 - location (IS-NONGOAL pos-2-1)
pos-3-2 - location (IS-NONGOAL pos-2-2)
pos-3-3 - location (IS-NONGOAL pos-2-3)
pos-3-4 - location (IS-NONGOAL pos-2-4)
pos-3-5 - location (IS-NONGOAL pos-2-5)
pos-3-6 - location (IS-NONGOAL pos-2-6)
pos-3-7 - location (IS-NONGOAL pos-2-7)
pos-4-1 - location (IS-NONGOAL pos-3-1)
pos-4-2 - location (IS-NONGOAL pos-3-2)
pos-4-3 - location (IS-NONGOAL pos-3-3)
pos-4-4 - location (IS-NONGOAL pos-3-4)
pos-4-5 - location (IS-NONGOAL pos-3-5)
pos-4-6 - location (IS-NONGOAL pos-3-7)



(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL
(IS-NONGOAL

(MOVE-DIR pos-1-2
(MOVE-DIR pos-2-1
(MOVE-DIR pos-2-2

(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR

pos-2-2
pos-2-4
pos-2-4
pos-2-5
pos-2-5
pos-2-5
pos-2-6
pos-2-6
pos-3-4
pos-3-4
pos-3-4
pos-3-5
pos-3-5
pos-3-5
pos-3-5
pos-3-6
pos-3-6
pos-3-6
pos-4-2
pos-4-2
pos-4-3

pos-4-1)
pos-4-2)
pos-4-3)
pos-4-4)
pos-4-5)
pos-4-6)
pos-4-7)
pos-5-1)
pos-5-2}
pos-5-3)
pos-5-4)
pos-5-5)
pos-5-7)
pos-6-1)
pos-6-2)
pos-6-3)
pos-6-4)
pos-6-5)
pos-6-6)
pos-6-7)
pos-7-1)
pos-7-2}
pos-7-3)
pos-7-4)
pos-7-5)
pos-7-6)}
pos-7-7)
pos-2-2
pos-2-2
pos-1-2
pos-2-1
pos-2-5
pos-3-4
pos-2-4
pos-2-6
pos-3-5
pos-2-5
pos-3-6
pos-2-4
pos-3-5
pos-4-4
pos-2-5
pos-3-4
pos-3-6
pos-4-5
pos-2-6
pos-3-5
pos-4-6
pos-4-3
pos-5-2
pos-4-2

dir-right)
dir-down)
dir-left)
dir-up)
dir-down)
dir-right)
dir-up)
dir-down)
dir-right)
dir-up)
dir-right)
dir-left)
dir-down)
dir-right)
dir-left)
dir-up)
dir-down)
dir-right)
dir-left)
dir-up)
dir-right)
dir-down)
dir-right)
dir-up)

10

(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR
(MOVE-DIR

pos-4-3
pos-4-3
pos-4-4
pos-4-4
pos-4-4
pos-4-5
pos-4-5
pos-4-5
pos-4-5
pos-4-6
pos-4-6
pos-4-6
pos-5-2
pos-5-2
pos-5-2
pos-5-3
pos-5-3
pos-5-3
pos-5-5
pos-5-5
pos-5-5
pos-5-6
pos-5-6
pos-5-6
pos-6-2
pos-6-2
pos-6-3
pos-6-3
pos-6-5
pos-6-5
pos-6-6
pos-6-6

pos-4-4
pos-5-3
pos-3-4
pos-4-3
pos-4-5
pos-3-5
pos-4-4
pos-4-6
pos-5-5
pos-3-6
pos-4-5
pos-5-6
pos-4-2
pos-5-3
pos-6-2
pos-4-3
pos-5-2
pos-6-3
pos-4-5
pos-5-6
pos-6-5
pos-4-6
pos-5-5
pos-6-6
pos-5-2
pos-6-3
pos-5-3
pos-6-2
pos-5-5
pos-6-6
pos-5-6
pos-6-5

(at player-01 pos-6-3)
(at stone-01 pos-4-3)
(at stone-02 pos-5-3)

(clear
(clear
(clear
(clear
(clear
(clear
(clear
(clear
(clear
(clear
(clear
(clear
(clear
(clear
(clear
(clear

pos-1-2)
pos-2-1})
pos-2-2)
pos-2-4)
pos-2-5)
pos-2-6)
pos-3-4)
pos-3-5)
pos-3-6)
pos-4-2)
pos-4-4)
pos-4-5)
pos-4-6)
pos-5-2)
pos-5-5)
pos-5-6)

dir-down)
dir-right)
dir-left)
dir-up)
dir-down)
dir-left)
dir-up)
dir-down)
dir-right)
dir-left)
dir-up)
dir-right)
dir-left)
dir-down)
dir-right)
dir-left)
dir-up)
dir-right)
dir-left)
dir-down)
dir-right)
dir-left)
dir-up)
dir-right)
dir-left)
dir-down)
dir-left)
dir-up)
dir-left)
dir-down)
dir-left)
dir-up)



(clear pos-6-2) (:goal (and

(clear pos-6-5) (at-goal stone-01)
(clear pos-6-6) (at-goal stone-02)
(= (total-cost) 0) )
) (:metric minimize (total-cost))

B The Gripper Domain

In the Gripper domain, a single robot carries balls between two rooms. The robot has two
grippers and can therefore carry up to two balls at the same time. The goal is typically that
all balls should be in the other room.

This domain is intentionally designed to demonstrate redundancy: There are n balls that
can be picked up in n! different orders, and each ball can be picked up in different grippers.
None of these choices actually matter, so an optimal plan could easily be generated by a
simple loop that moves the balls in an arbitrary order, for example in alphabetical order.
The question is, does a particular planner or heuristic handle this redundancy efficiently, or
does it spend a large amount of time investigating different “irrelevant” action orders?

(define (domain gripper-strips)
(:predicates (room ?r) (ball 7b) (gripper ?7g)
(at-robby ?r)
(at 7b ?r)
(free 79)
{carry 70 ?g})

(:action move
:parameters (?from ?7to)
iprecondition (and (room ?from) (room ?to) (at-robby ?7from))
;effect (and (at-robby ?to)
(not (at-robby 7from)})))

(:action pick
iparameters (7obj ?room ?gripper)
iprecondition (and (ball ?obj) (room ?room) (gripper ?gripper)
(at ?70bj ?room) (at-robby ?room) (free ?gripper))
reffect (and (carry ?7obj ?gripper)
(not (at ?cbj ?7room))
(not (free ?gripper))))

(:action drop
:parameters (?7obj 7room ?7gripper)
:precondition (and (ball ?obj) (room 7room) (gripper ?gripper)
(carry ?obj ?gripper) (at-robby ?room))
reffect (and (at ?0bj 7room)
(free ?gripper)
(not (carry ?obj ?gripper)))))

11



The following is a small problem instance with 4 balls.

(define (problem strips-gripper-x-1)
(:domain gripper-strips)
(:objects rooma roomb ball4 ball3 ball2 balll left right)
(:init (room rooma)

(room roomb)

(ball ball4)

(ball ball3)

(ball ball2)

(ball balll)

(at-robby rooma)

(free left)

(free right)

(at ball4 rooma)

(at ball3 rooma)

(at ball2 rooma)

{at balll rooma)

(gripper left)

(gripper right))

(:goal (and (at ball4 roomb)

(at ball3 roomb)
(at ball2 roomb)
(at balll roomb})))

12



