Forsattsblad till skriftlig tentamen vid
Linkopings universitet

Datum for tentamen 2018-11-02

Sal (1) G36(7)

Tid 8-12

Kurskod TDDD48

Provkod TEN1
Kursnamn/beniimning Automatisk planering
Provnamn/benéimning Skriftlig tentamen
Institution IDA

Antal uppgifter som ingar i 4

tentamen

Jour/Kursansvarig .

Ange vem som besoker salen Jonas Kvarnstrom

Telefon under skrivtiden 013-28 23 05 eller 0704-737579
Besoker salen ca klockan ca 09:00
Kursadnumstratqr/lmntaktperson Anna Grabska Eklund, ankn. 2362, anna.grabska.eklund@liu.se
(namn + tfnr + mailaddress)

Tillatna hjilpmedel inga

Ovrigt

Antal exemplar i pasen




TDDD48 Automated Planning 2018-11-02

Important Instructions: Read before you begin!

e Though the questions are in English, feel free to answer in Swedish if you prefer!
Det gér bra att skriva pa svenska!

o Please, write clearly (block letters if necessary), and use the lined side of the paper
except for diagrams! Checked paper works well for math but tends to make text
difficult to read... '

e Clear and comprehensible explanations and motivations are always required. This does
not necessarily mean that each answer should be a long essay. What is important is
that all the relevant facts are present and clearly explained.

e To see if you have succeeded, turn the tables and try to misunderstand.
Specifically, after you write an answer, go back and see if you can creatively misinter-
pret the answer. If so, clarify, clarify, clarify!

e A good way to show your knowledge is to write explanations that can be understood
by someone else who does not already know the correct answer.

If your answer explains a topic well enough that a fellow student could learn some-
thing new from the answer and/or apply it in practice, you have probably succeeded.

Conversely, if we ask how HTNs work, saying that “there are methods and operators
and you construct a tree using patterns and there can be constraints too, and there’s
no goal” does not provide much in terms of useful information, and certainly will not

give you a full score.

e Concrete examples or counterexamples may be useful as part of a motivation. If so,
please make sure you include all relevant information about the example you have
chosen to use. What is relevant naturally depends on how you use the example.

e When asked to provide examples or illustrate something through a planning problem
instance, save time by keeping the example as small as possible.



Notation and Terminology

To avoid unnecessary confusion, we will hint at some of the terminology that you have
hopefully learned during the course. Please be careful to use the correct words!

Predicate (name/symbol) — at, on, raining

Object (name/symbol) — A, B, red, truckl, helicopter8, location4
Variable — truck, location — in italics

Atom — at(mytruck, overthere), at(truck, location4), raining
Ground atom — at(mytruck, overthere), raining

Fact — typically a ground atom

Literal — atom or negated atom

Ground literal

Formula — combination of atoms using connectives

State — a full specification of the “configuration” of the world (to the extent it is mod-
eled in the problem specification)

Goal formula, goal state, set of goal states, goal fact, ...

h*(s) - the cost of an optimal plan reaching a goal state from state s



1 General Concepts in Automated Planning

2

a)

b)

c)

a)

State transition systems: Please define the three components of a standard state
transition system, as used in classical planning. You should also clearly (but briefly)
explain each of those three components. (2 points)

Reachability and physically possible states: Let us define a physically possible state
as a state that corresponds to a situation that may actually occur in the real world.
This can be contrasted with physically impossible states, which may include facts such
as on(A,A) (representing that an entity is on top of itself), or contain both at(entity,loc1)
and at(entity,loc2) (representing that an entity is at two distinct locations).

Consider the standard Logistics domain, defined in Appendix A. Can the state achieved
by executing an instance of the drive-truck operator ever be a physically impossible
state? If so, provide an example. If not, provide a clear motivation. (2 points)

Domain transition graphs: Explain clearly what a domain transition graph represents
(what information it provides) and how to construct one given a planning problem
instance. Exemplify and illustrate such a graph, based on a problem instance that
you define for a domain of your choice. Hint: You will have to use a state-variable
representation for the DTG to make sense. (3 points)

Search Techniques

In backward search, what does a search node contain / correspond to? In other words,
what information is stored there, that the search algorithm can use to determine
whether the goal is satisfied and what successors exist? (1 point)

b) Given a search node in backward search (according to the previous question), how

do we define the set of successors? For full points, your answer should be sufficiently
detailed that it can be used to determine/compute the set of successor search nodes
of a given search node given an arbitrary planning problem instance. (8 points)



3 Heuristics

This question relates to fact landmarks in the simple Blocks World domain. As you have
seen, states in this domain can be described with atoms related to five predicates:

e (on-table ?x) — block ?x is on the table.
e (on ?x ?y) — block ?x is on top of block ?y.
e (holding ?x) — the robotic hand is holding block ?x.

e (clear ?x) — you are free to place something on top of block ?x. This implies that there
is nothing on top of it, and you are not holding it.

e (handempty) — the single robotic hand is not holding a block.
Assume the following 5-block problem instance with the blocks A,B,C,D,E:

e Current state: {(clear E), (on E D), (on D C), (on C B), (on B A), (ontable A), (handempty)}
— All blocks are in a single tower with E on top.

e Goal: {(on A B), (on B C), (on C D), (on D E)} - All blocks are in a single tower in the
other order.

This problem instance results in a total of 41 atomic facts that may be true or false, including
the initial and goal facts shown above. Therefore there are 2% ay 2. 10'2 states. These can
be modified using 4 actions:

e (pickup ?x) picks up a block that is clear and on the table, which requires handempty.

e (unstack ?x ?y) picks up a block that is clear and on top of another block, which
requires handempty.

e (putdown ?x) puts the block you are holding on the table.

e (stack ?x ?y) puts the block you are holding on top of a clear block.

For the purpose of this question, you should only require a general understanding of these
actions. However, the complete action specifications are also available on the next page.

Question: The problem instance has more than 10 positive (non-negated) fact landmarks
that can be useful for landmark-based heuristics. Please specify four of these. For each
one, you should clearly motivate why it is a fact landmark. The general definition of a fact
landmark is not sufficient as a motivation — you must also explain (at least briefly) why each
landmark actually satisfies this definition.

Please constrain your answer to the list of landmarks and your motivations, and do not explain
other aspects of landmark heuristics. (3 points)



The following is a standard formulation of the Blocks World in PDDL.

(define (domain blocksworld)
(:requirements :strips)

(:predicates (clear 7x)
(on-table 7x)
(handempty)
(holding 7x)
(on ?x 7y))

(:action pickup :parameters (7ob)
:precondition (and (clear ?ob) (on-table ?ob) (handempty))
.effect (and (holding 7ob) (not (clear 7ob)) (not (on-table 7ob))
(not (handempty))))

(:action putdown :parameters (7ob)
:precondition (holding 7ob)
:effect (and (clear 7ob) (handempty) (on-table ?ob)
(not (holding 70b))))

(:action stack :parameters (7ob ?underob)
:precondition (and (clear 7underob) (holding 70b))
.effect (and (handempty) (clear ?7ob) (on 7ob 7underob)
(not (clear 7underob)) (not (holding 7ob))))

(:action unstack :parameters (7ob Punderob)
:precondition (and (on 7ob 7underob) (clear ?0b) (handempty))
:effect (and (holding 7ob) (clear ?underob)
(not (on 7ob ?7underob)) (not (clear ?ob)) (not (handempty)))))



4 Planning with Incomplete Information

a) Explain the meaning of three types of planning: Fully observable, partially observable
and non-observable. Include sufficient detail for the reader to understand the differ-
ences between these types of planning and the consequences for the planner and plan

executor.

Hints: This is about observations, but who would observe something? What can or
can’t this entity observe? When would (or wouldn’t) such observations be made?
When could the observations be useful and what would they be used for? What infor-
mation do you have if you don’t have observations? (3 points)

b) Policy iteration is one of several algorithms that can be applied to Markov Decision
Processes. Please describe the policy iteration algorithm. You do not need to include
formulas, but there should be sufficient details to understand the steps in the algorithm
at a higher level. (3 points)



A The Logistics Domain

The standard logistics domain contains a set of packages that should be transported to
their destinations. A package can be transported by truck between any two locations in
the same city, and by airplane between special airport locations in different cities. Since
trucks cannot deliver packages directly to other cities, and airplanes cannot visit arbitrary
locations, delivering a package might require using a truck to move it to an airport, using
an airplane to move it to another city and then once again using a truck to get the package

to its final destination.

We assume the following types of objects:
e thing, with subtypes package and vehicle
e vehicle, with subtypes truck and airplane
e location, with subtype airport

A model of this domain may include the following operators. For Simple Task Network
planning, these operators correspond directly to primitive tasks.

o load-truck(package, truck, location) loads a package into a truck, given that they are both
at the same location. The truck can hold an arbitrary number of packages.

e unload-truck(package, truck, location) unloads a package from a truck in the current

location.

e load-plane(package, airplane, location) loads a package into a plane, given that they are
both at the same location. The plane can hold an arbitrary number of packages.

e unload-plane(package, airplane, location) unloads a package from an airplane in the

current location.
e drive-truck(truck, location, location) drives a truck between locations in the same city.
e fly-plane(plane, airport, airport) flies a plane between two airports in different cities.
We assume the following predicates are available:

e at(thing,loc) — the package or vehicle thing is at the location loc. Note that a package
“at” g certain location cannot be “in” a vehicle in the same state.

e in(x,vehicle) — the package x is in the given vehicle.

e same-city(loc1,loc2) — the given locations are in the same city. Note that every location

must be in the same city as itself.

We assume a typed domain model where each operator parameter and predicate parameter
is given a specific type and cannot take on values outside that type. For example, if t; is
a truck, an expression such as at(ty,t;) is not merely false but incorrect. Nevertheless,



we provide the following type predicates that may be useful in some situations: thing(),
package(x), vehicle(x), truck(x), airplane(x), location(x) and airport(x).

We can then define the operators more formally as follows:

e load-truck(package pkg, truck irk, location loc)
Precondition: at(pkg, loc) A at(trk, loc)
Effects: —at(pkg, loc), in(pkg, trk)

load-airplane(package pkg, airplane plane, location /oc)
Precondition: at(pkg, loc) A at(plane, loc)
Effects: at(pkg, loc), in(pkg, plane)

unload-truck(package pkg, truck trk, location oc)
Precondition: in(pkg, trk) A at(trk, loc)
Effects: nin(pkg, trk), at(pkg, loc)

unload-airplane(package pkg, airplane plane, location foc)
Precondition: in(pkg, plane) A at(plane, loc)
Effects: —in(pkg, plane), at(pkg, loc)

drive-truck(truck trk, location from, location to)
Precondition: at(trk, from) A same-city(from, o)
Effects: —at(trk, from), at(trk, to)

fly-airplane(airplane plane, airport from, airport to)

Precondition: at(plane, from)
Effects: —at(plane, from), at(plane, to)

Total points: 20



