Forsattsblad till skriftlig tentamen vid
Linkdpings universitet

tentamen

Datum for tentamen 2018-08-23

Sal (1) TER3(/)

Tid 8-12

Kurskod TDDDA48

Provkod TEN1
Kursnamn/benimning Automatisk planering
Provnamn/benéimning Skriftlig tentamen
Institution IDA

Antal uppgifter som ingar i 4

Jour/Kursansvarig
Ange vem som besoker salen

Jonas Kvarnstrom

Telefon under skrivtiden

Besoker salen ca kKlockan

013-28 23 05 eller 0704-737579
ca 09:00 '

(namn + tfnr + mailaddress)

Kursadministrator/kontaktperson

Anna Grabska Eklund, ankn. 2362, anna. grabska.eklund@ﬁu.se

Tillitna hjilpmedel

inga

Ovrigt

Antal exemplar i pasen




TDDD48 Automated Planning 2018-08-23

Important Instructions: Read before you begin!

e Though the questions are in English, feel free to answer in Swedish if you prefer!
Det gér bra att skriva pa svenskal

e Please, write clearly (block letters if necessary), and use the lined side of the paper
except for diagrams! Checked paper works well for math but tends to make text
difficult to read...

o Clear and comprehensible explanations and motivations are always required. This does
not necessarily mean that each answer should be a long essay. What is important is
that all the relevant facts are present and clearly explained.

e To see if you have succeeded, turn the tables and try to misunderstand.
Specifically, after you write an answer, g0 back and see if you can creatively misinter-
pret the answer. If so, clarify, clarify, clarify!

e A good way to show your knowledge is to write explanations that can be understood
by someone else who does not already know the correct answer.

If your answer explains a topic well enough that a fellow student could learn some-
thing new from the answer and Jor apply it in practice, you have probably succeeded.

Conversely, if we ask how HTNs work, saying that “there are methods and operators
and you construct a tree using patterns and there can be constraints too, and there’s
no goal” does not provide much in terms of useful information, and certainly will not

give you a full score.

e Concrete examples or counterexamples may be useful as part of a motivation. If so,
please make sure you include all relevant information about the example you have
chosen to use. What is relevant naturally depends on how you use the example.

e When asked to provide examples or illustrate something through a planning problem

instance, save time by keeping the example as small as possible.



Notation and Terminology

To avoid unnecessary confusion, we will hint at some of the terminology that you have

hopefully learned during the course. Please be careful to use the correct words!

Predicate (name/symbol) — at, on, raining

Object (name/ symbol) — A, B, red, truckl, helicopter8, location4
Variable — truck, location — in italics

Atom — at(mytruck, overthere), at(truck, location4), raining
Ground atom — at(mytruck, overthere), raining

Fact — typically a ground atom

Literal — atom or negated atom

Ground literal

Formula — combination of atoms using connectives

State — a full specification of the “configuration” of the world (to the extent it is mod-

eled in the problem specification)
Goal formula, goal state, set of goal states, goal fact, ...

h*(s) — the cost of an optimal plan reaching a goal state from state s



1 General Concepts in Automated Planning

Recall that in standard classical planning problems, no function symbols are allowed, goals

constrain only the final state reached by a plan, and preconditions, effects and goals con-

sist of simple sets of positive and negative literals, without disjunction, quantification or

conditional effects.

a)

b)

c)

d)

Let P = (O,s,, g) be a classical planning problem. Let II = {m | 7 is applicable to 55}
be the set of all action sequences that are executable starting in the initial state sq.
Is TI always infinite, sometimes infinite or never infinite? Motivate and explain why.
(1 point)

Continuing in the context of the previous question, let S = {y(so, n) | m € 11} be the
set of all states that are reachable through executable action sequences starting at sg.
Is S always infinite, sometimes infinite or never infinite? Motivate and explain why.

(Here we have extended the state transition function y(s, @) to operate on sequences 7
in the natural way, by applying each action in 7 in the order of execution.) (1 point)

Let P, = (0,50, &) and P, = (0,0, 5) be two classical planning problems that share
the same operators and initial state. Let 7t; = [aj,...,a,] be a solution of length n
for P;, and let 7wy = [by, ..+, b,,] be a solution of length m for P,.

Suppose that the concatenated action sequence 7y - Ty = [y, +> dns by,..., b, ] hap-
pens to be executable starting at state So. Can we then be certain that it is also a
solution for P, (achieves the goals of P,)? Show clearly that this is or is not the case.
If you want to provide an example or counterexample, try to keep it short and simple.

(2 points)

Given a domain, problem instance and starting state, can you easily and quickly find
the number of states reachable from the starting state? If so, show how. If not, moti-

vate clearly. (1 point)



2 Partial-Order Planning

We now consider partial-order planning. We use the standard logistics domain as defined
in Appendix A; please familiarize yourself with it before continuing.

We will use a problem instance containing the packages {p, P2}, the trucks {t;, t,} and the
three locations {Iy, 1,13}, none of which are airports.

In the initial state, we know that at(py, 1), at(pa, [2), at(tq,1,), and at(ty, [,). Alllocations are
in the same city: {same-city(1,1") | [, I’ € {l;,1,,15}}. No packages are loaded into vehicles.

The goal is that at(py, I3), at(pa, L), at(ty, L), and at(ts, 1)

Below you will be required to demonstrate a number of partially ordered plans that could
be encountered during the planning process. Unless we explicitly say otherwise, you must
clearly show the following in each such plan:

e For each action, all preconditions above the action and all effects below the action.
(Or, if you write them horizontally: Preconditions to the left, effects to the right.)

o All other relevant structural features in the plan: precedence constraints (solid ar-
rows), causal links (dashed arrows) and threats.

You should do the following:

a) Show the initial partial plan 7, generated for this problem instance by a typical partial-
order planner, such as the PSP planner in the course book or the planning procedure
illustrated during the course lectures. This is the partial plan that corresponds to the
unique first node (“root node”) generated in the search space. Think carefully about
what the very first node is! (1 point)

b) Show all the immediate successors of the initial partial plan. That is, demonstrate
all the different ways in which a standard PSP-like partially ordered planner might
extend T, in a single step.

For this particular task you do not have to illustrate each successor plan graphically.
Instead, you can explain clearly in writing how each successor would extend 7. How-
ever, you still need to indicate all additions that would be made relative to the initial
partial plan, including new constraints and relations as discussed above! (2 points)

¢) Show a partial plan for this problem in which one or more threats appear. Indicate
all threats clearly, if there is more than one, and explain why they are threats. (Note
that you might be able to extend this plan into a solution in the next subquestion.)

(2 points)

d) Show a complete solution plan for this problem instance, making good use of both
trucks to efficiently resolve all goals. Make sure that actions are not temporally con-
strained relative to each other unless this is necessary in order to achieve the goal.
(1 point)



3 Search Techniques

Note: A couple of questions are identical or similar to those on the previous exam. This is
intended as a test to see to what extent students study and learn from participation.

Recall that the FF (FastForward) planner pioneered the use of helpful actions, a specially
designated subset of the applicable actions in any particular search state. FF used these
actions in a particular way together with enforced hill climbing. However, other planners
have used them differently, through different ways of treating the search (priority) queue.

a) How are dual queues used to achieve a balanced use of helpful actions? For full points,
you need to provide a clear description of the actual use of dual queues and how they
are integrated in the search process, at a level close to pseudo-code. (2 points)

Hints — note that we are not interested in the answers to any of the hint questions, you

can simply use them to lead you towards the correct answers for the actual questions!

_ Hint: Dual queues can be used with many forms of best-first search, similar to
A*. What does this tell you about how the search is structured?

_ Hint: What entities are usually present in a search queue/space? What does

this tell you about how helpful actions may play a role?

b) What is the difference between dual queues and boosted queues? (1 point)

Lifted planning is another general technique applicable to a variety of search spaces and
planning algorithms. During the lectures, we specifically discussed lifted partial-order plan-
ning as well as lifted backward goal-space planning, but since the technique itself is general,
it could also be applied to for example HTN planning.

¢) Explain what lifted planning is in general.

Then give a concrete example of why lifting can be useful when generating partial-
order plans in particular. In this example you should:

_ Show a small lifted partial-order plan structure (or a sufficiently complete and

informative fragment of one),

_ Contrast it against a non-lifted alternative structure that you also include in your
answer, and

— Explain what is better about the lifted version. This should be be done through
contrasting how planning would proceed in the two alternative (lifted and non-
lifted) structures and showing how the lifted structure has an advantage.

Note again: The plan fragment must be sufficiently complete and informative, which
implies that you should include all details that help explain the usefulness of lifting.

(3 points)



4 Planning with Incomplete Information

In one of the later lectures, we discussed a number of different planning problems involving
incomplete information about the world, including the Stochastic Shortest Path Problem
(SSPP).

a) The Stochastic Shortest Path Problem is different from the general MDP (Markov De-
cision Process) problem. Nevertheless, an SSPP problem instance can be solved by a
general MDP solver.

How do we transform the SSPP problem before giving it to an MDP solver, so that the
solver cannot generate a policy that requires executing an infinite number of useful
actions? How does this transformation guarantee that any MDP solution corresponds
to an SSPP solution that achieves the SSPP-specific objectives?

(Part of this transformation may consist of turning costs into negative rewards, but
this is not the part we are interested in here.)

(2 points)



A The Logistics Domain

The standard logistics domain contains a set of packages that should be transported to
their destinations. A package can be transported by truck between any two locations in
the same city, and by airplane between special airport locations in different cities. Since
trucks cannot deliver packages directly to other cities, and airplanes cannot visit arbitrary
locations, delivering a package might require using a truck to move it to an airport, using
an airplane to move it to another city and then once again using a truck to get the package

to its final destination.

We assume the following types of objects:
o thing, with subtypes package and vehicle
e vehicle, with subtypes truck and airplane
e location, with subtype airport

A model of this domain may include the following operators. For Simple Task Network

planning, these operators correspond directly to primitive tasks.

o load-truck(package, truck, location) loads a package into a truck, given that they are both
at the same location. The truck can hold an arbitrary number of packages.

e unload-truck(package, truck, location) unloads a package from a truck in the current

location.

e load-plane(package, airplane, location) loads a package into a plane, given that they are
both at the same location. The plane can hold an arbitrary number of packages.

e unload-plane(package, airplane, location) unloads a package from an airplane in the

current location.
e drive-truck(truck, location, location) drives a truck between locations in the same city.
e fly-plane(plane, airport, airport) flies a plane between two airports in different cities.
We assume the following predicates are available:

e at(thing,loc) — the package or vehicle thing is at the location loc. Note that a package

“gq1” a certain location cannot be “in” a vehicle in the same state.
e in(x,vehicle) — the package X is in the given vehicle.

e same-city(loc1,loc2) —the given locations are in the same city. Note that every location

must be in the same city as itself.

We assume a typed domain model where each operator parameter and predicate parameter
is given a specific type and cannot take on values outside that type. For example, if tyis
a truck, an expression such as at(ty, t;) is not merely false but incorrect. Nevertheless,



we provide the following type predicates that may be useful in some situations: thing(x),
package(x), vehicle(x), truck(x), airplane(x), location(x) and airport(x).

We can then define the operators more formally as follows:

e load-truck(package pkg, truck trk, location loc)
Precondition: at(pkg, loc) A at(trk, loc)
Effects: —at(pkg, loc), in{pkg, trk)

load-airplane(package pkg, airplane plane, location loc)

Precondition: at(pkg, foc) A at(plane, loc)
Effects: mat(pkg, loc), in(pkg, plane)

¢ unload-truck(package pkg, truck trk, location loc)
Precondition: in(pkg, trk) A at(irk, loc)
Effects: —in(pkg, trk), at(pkg, loc)

unload-airplane(package pkg, airplane plane, location loc)
Precondition: in(pkg, plane) A at(plane, loc)
Effects: —in(pkg, plane), at(pkg, loc)

drive-truck(truck trk, location from, location o)
Precondition: at(trk, from) A same-city(from, to)
Effects: —at(trk, from), at(trk, t0)

fly-airplane(airplane plane, airport from, airport to)
Precondition: at(plane, from)
Effects: —at(plane, from), at(plane, fo)



