Forsittsblad till skriftlig
tentamen vid Linkopings

universitet
Datum for tentamen 2018-06-02
Sal (1) U10(20)
Tid 1|14- 18
" |Kurskod TDDD48
Provkod TEN1
Kursnamn/benimning Automatisk planering
Provnamn/benimning Skriftlig tentamen
Institution IDA
Antal uppgifter som ingar i ﬂ 6
tentamen
Jour/Kursansvarig Mikael Nilsson bestker salen
Ange vem som besdker salen (Jonas Kvarnstrom - examinator)

ﬁ‘elefon under skrivtiden

“0708—593291(Mikael), 0704-737579 (Jonas)

lBest')ker salen ca klockan

|ca 15-15:30

(namn + tfor + mailaddress)

Kursadministrator/kontaktperson||{Anna Grabska Eklund, ankn. 2362,

anna.grabska.eklund@liu.se

[Tillitna hjilpmedel

Jlinga

|(")vrigt

|

[Antal exemplar i pasen

I




TDDD48 Automated Planning 2018-06-02

Important Instructions: Read before you begin!

e Though the questions are in English, feel free to answer in Swedish if you prefer!
Det gér bra att skriva pa svenska!

e Please, write clearly (block letters if necessary), and use the lined side of the paper
except for diagrams! Checked paper works well for math but tends to make text
difficult to read. ..

e Clear and comprehensible explanations and motivations are always required. This does
not necessarily mean that each answer should be a long essay. What is important is
that all the relevant facts are present and clearly explained.

e To see if you have succeeded, turn the tables and try to misunderstand.
Specifically, after you write an answet, go back and see if you can creatively misinter-
pret the answer. If so, clarify, clarify, clarify!

e A good way to show your knowledge is to write explanations that can be understood
by someone else who does not already know the correct answer.

If your answer explains a topic well enough that a fellow student could learn some-
thing new from the answer and/or apply it in practice, you have probably succeeded.

Conversely, if we ask how HTNs work, saying that “there are methods and operators
and you construct a tree using patterns and there can be constraints too, and there’s
no goal” does not provide much in terms of useful information, and certainly will not

give you a full score.

e Concrete examples or counterexamples may be useful as part of a motivation. If so,
please make sure you include all relevant information about the example you have
chosen to use. What is relevant naturally depends on how you use the example.

e When asked to provide examples or illustrate something through a planning problem
instance, save time by keeping the example as small as possible.




Notation and Terminology

To avoid unnecessary confusion, we will hint at some of the terminology that you have
hopefully learned during the course. Please be careful to use the correct words!

Predicate (name) — at, on, raining

Object (name) — A, B, red, truckl, helicopter8, location4
Variable — truck, location

Atom — at(truckl, location4), at(truck, location4), raining
Ground atom — at(truckl, location4), raining

Fact — typically a ground atom

Literal — atom or negated atom

Ground literal

Formula — combination of atoms using connectives

State — a full specification of the “configuration” of the world (to the extent it is mod-
eled in the problem specification)

Goal formula, goal state, set of goal states, goal fact, ...

h*(s) — the cost of an optimal plan reaching a goal state from state s




1 Delete Relaxation

The first question concerns delete relaxation in classical planning. We use the standard
logistics domain as defined in Appendix A; please familiarize yourself with it before contin-

uing.

Let P = (%, s,,g) be a classical planning problem in the logistics domain, where:

The objects are the two packages {pkgy, pkgs,}, the trucks {trky, trk,} and the three
locations {loc,, 10y, locs}, none of which are airports.

The initial state s, specifies that at(pkg;, loc,), at(pkg,, locy), at(trks, loc,), and at(trk,, loc,).
Also, all locations are in the same city: {same-city(I,1") | L,I" € {locy,locy, locg}}.
All other facts are initially false. For example, no packages are loaded into vehicles.

The goal is g = {at(pkgy, locs), at(pkg,, locs), at(trky, loc,), at(irky, l0c,)}

Let P’ = (¥,s),g') be the delete-relaxed version of P. All questions below should be

JO’

answered in the context of the delete-relaxed problem!

a)

b)

Is the state {at(pkg;,l0c,),at(pkds,loc,), at(trky, loc,), at(trky, locy )} reachable from sg
in P’? If so, show an action sequence that reaches this state. If not, provide a clear

explanation and motivation. (1 point)

Suppose that in P’, starting in state so, we execute the action sequence
{drive-truck(trky, loc,, loc, ), load-package(pkgs , trks, loc,),

drive-truck(irky, loc, 10c3), unload-package(pkg,, trky, locs)).

This results in a state sequence (so,51,52,53,54) Where so is the initial state and the
other four states are created by applying the actions shown above. Specify these four
states. You may omit all same-city atoms: While they are important parts of each state,

they are never modified. (2 points)

2 Landmarks

Consider again the original planning problem P from Question 1, without delete relaxation.

a) Provide two distinct fact landmarks that need to be achieved in this planning problem,

and motivate why they are landmarks. (1 point)

b) Can you provide another two fact landmarks that need to be achieved in this plan-

ning problem? If so, motivate why they are landmarks. If not, motivate why this is

impossible. (2 points)




3 Choosing Heuristics

Suppose you are given a classical planning problem P = (¥, s,, g), where XX = (S, 4, 7).

Suppose you are also given three distinct heuristic functions hy, hy and h¢, and that these
result in the following heuristic values for s, and its four successors sq, . ..,s4 in . While
the full search space contains many additional states that can be reached from sy, ...,54, W€

will only consider this small part.

State S; h*(si) hA(Si) hB(Si) hC(Si)

So 10 8 9 9
S1 9 6 5 7
Sg 8 3 9 7
S3 3 2 1 1
54 2 1 2 2

Each heuristic function has various properties that makes it more or less suitable for use with
different search strategies. Determining for certain which one is the best for a particular
strategy would require more information about the entire search space, but the table above

still shows certain trends from which we can generalize.

a) Which of the three heuristic functions would appear to be the most suitable for use
with satisficing hill climbing search (not the “enforced” variation)? We need a clear

motivation for why this is the case. (2 points)

b) Which of the three heuristic functions would appear to be the most suitable for use
with optimal A* search? We need a clear motivation for why this is the case. (2 points)

4 Search Techniques

Recall that the FF (FastForward) planner pioneered the use of helpful actions, a specially
designated subset of the applicable actions in any particular search state.

FF used these actions in a particular way together with enforced hill climbing. However,
other planners have used them differently, through another treatment of the search (priority)
queue.

a) How are dual queues used to achieve a balanced use of helpful actions? For full points,

you need to provide a clear description of the actual use of dual queues and how they
are integrated in the search process, at a level close to pseudo-code. (2 points)

b) What is the difference between dual queues and boosted queues? (1 point)




5 Motion Planning

Many forms of motion planning build on the use of a local planner that knows how to gener-
ate local plans for a particular type of vehicle. As the local planner is typically quite limited
in its ability to connect arbitrary points, there must also be a higher level planner that can
repeatedly call the local planner. For example, the higher level planner can be a probabilistic

roadmap (PRM) planner.

e PRM planners begin with a pre-processing phase where the starting point and goal
are not known. Explain what the PRM planner does during this phase, how it decides
when to stop, and what the resulting output is.

We will not require the description to be perfect in every detail, but it should be suffi-
ciently detailed to demonstrate that you grasp the most important concepts, close to
high-level pseudo-code for a full score.

o When the PRM planner does receive a starting point and goal, how does it create a
motion plan? How is the result of the pre-processing phase used in this process?

(4 points)



6 Planning with Incomplete Information

In one of the later lectures, we discussed a number of different planning problems involving

incomplete information about the world, including the Stochastic Shortest Path Problem
(SSPP).

a) What is the Stochastic Shortest Path Problem?

b)

You might want to explain this by contrasting it to the classical planning problem
and explaining the differences and similarities in the respective state transition systems
of these two problems. Leading questions: What knowledge do we have before we
start? What can we observe? What assumptions do we make about actions and their
outcomes? What type of objective do we model in an SSPP problem instance? What
kind of solution structure might we get?

(2 points)

The Stochastic Shortest Path Problem is different from the general MDP (Markov De-
cision Process) problem. Nevertheless, an SSPP problem instance can be solved by a

general MDP solver.

How do we transform the SSPP problem before giving it to an MDP solvet, so that the
solver cannot generate a policy that requires executing an infinite number of useful
actions? How does this transformation guarantee that any MDP solution corresponds
to an SSPP solution that achieves the SSPP-specific objectives?

(Part of this transformation may consist of turning costs into negative rewards, but
this is not the part we are interested in here.)

(2 points)




A The Logistics Domain

The standard logistics domain contains a set of packages that should be transported to
their destinations. A package can be transported by truck between any two locations in
the same city, and by airplane between special airport locations in different cities. Since
trucks cannot deliver packages directly to other cities, and airplanes cannot visit arbitrary
locations, delivering a package might require using a truck to move it to an airport, using
an airplane to move it to another city and then once again using a truck to get the package

to its final destination.

We assume the following types of objects:
e thing, with subtypes package and vehicle
e vehicle, with subtypes truck and airplane
o location, with subtype airport

A model of this domain may include the following operators. For Simple Task Network

planning, these operators correspond directly to primitive tasks.

e load-truck(package, truck, location) loads a package into a truck, given that they are both
at the same location. The truck can hold an arbitrary number of packages.

e unload-truck(package, truck, location) unloads a package from a truck in the current

location.

e load-plane(package, airplane, location) loads a package into a plane, given that they are
both at the same location. The plane can hold an arbitrary number of packages.

e unload-plane(package, airplane, location) unloads a package from an airplane in the

current location.
e drive-truck(truck, location, location) drives a truck between locations in the same city.
o fly-plane(plane, airport, airport) flies a plane between two airports in different cities.
We assume the following predicates are available:

e at(thing,loc) — the package or vehicle thing is at the location loc. Note that a package
“a¢” a certain location cannot be “in” a vehicle in the same state.

e in(x,vehicle) — the package x is in the given vehicle.

e same-city(loc1,loc2) — the given locations are in the same city. Note that every location

must be in the same city as itself.

We assume a typed domain model where each operator parameter and predicate parameter
is given a specific type and cannot take on values outside that type. For example, if t, is
a truck, an expression such as at(ty, t;) is not merely false but incorrect. Nevertheless,




we provide the following type predicates that may be useful in some situations: thing(x),
package(x), vehicle(x), truck(x), airplane(x), location(x) and airport(x).

We can then define the operators more formally as follows:

e load-truck(package pkg, truck trk, location loc)
Precondition: at(pkg, loc) A at(irk, loc)
Effects: —at(pkg, loc), in(pkg, trk)

load-airplane(package pkg, airplane plane, location loc)
Precondition: at(pkg, loc) A at(plane, loc)
Effects: —at(pkg, loc), in(pkg, plane)

unload-truck(package pkg, truck frk, location loc)
Precondition: in(pkg, trk) A at(trk, loc)
Effects: —in(pkg, trk), at(pkg, loc)

unload-airplane(package pkg, airplane plane, location loc)
Precondition: in(pkg, plane) A at(plane, loc)
Effects: —in(pkg, plane), at(pkg, loc)

e drive-truck(truck trk, location from, location to)
Precondition: at(frk, from) A same-city(from, to)
Effects: —at(irk, from), at(trk, to)

fly-airplane(airplane plane, airport from, airport to)
Precondition: at(plane, from)
Effects: —at(plane, from), at(plane, to)




