Forsittsida

https://tentabokning.liu.se/tentaanm/front_page.pl?eventID=110641

Forsittsblad till skriftlig tentamen [l

vid Linkopings universitet

|Datum for tentamen - 52017-10-28

Sal (1) ITER1(12)

Tia 1418 -

[Kursked ~ |TDDD48

[Provked ~ JTENI)
[Kursnamn/bensimning Automatisk planering
Provnammn/benimning |Skriftlig tentamen

Institution | DA

Antal uﬁpgifter som iﬁgﬁri la |

tentamen =~ ' _
A vom som besgker salen | onaS Kovamsto

[Telefon under skrivtiden 0704-737579

[Besoler salen caklockan _|nej (nds bara pi telefon) -
Kursadministratiir/kontaktpersoni Anna Grabska Eklund, ankn. 2362,

(namn + tfar + mailaddress) |anna.grabska.eklund@liuv.se

[Till:‘itna hjilpmedel Iinga

Ovrigt B

]Antal exemplar i pasen ‘

lavl

2017-10-26 11:50

TDDD48 Automated Planning 2017-10-25

Important Instructions: Read before you begin!

o Though the questions are in English, feel free to answer in Swedish if you prefer!
Det gar bra att skriva pé svenska!

e Please, write clearly (block letters if necessary), and use the lined side of the paper
unless you have a good reason not to! Checked paper works well for math but tends
to make text difficult to read...

o Clear and comprehensible explanations and motivations are always required. This does
not necessarily mean that each answer should be a long essay. What is important is
that all the relevant facts are present and clearly explained.

¢ To see if you have succeeded, turn the tables and try to misunderstand.
Specifically, after you write an answer, go back and see if you can creatively misinter-
pret the answer. If so, clarify, clarify, clarify!

¢ A good way to show your knowledge is to write explanations that can be understood
by someone else who does not already know the correct answer.

If your answer explains a topic well enough that a fellow student could learn some-
thing new from the answer and/or apply it in practice, you have probably succeeded.

Conversely, if we ask how HTNs work, saying that “there are methods and operators
and you construct a tree using patterns and there can be constraints too, and there’s
no goal” does not provide much in terms of useful information, and certainly will not
give you a full score.

e Concrete examples or counterexamples may be useful as part of a motivation. If so,
please make sure you include all relevant information about the example you have
chosen to use. What is relevant naturally depends on how you use the example.

e When asked to provide examples or illustrate something through a planning problem
instance, save time by keeping the example as small as possible.

1 Search, Search Guidance and Heuristics

This question relates to fact landmarks in the simple Blocks World domain. As you have
seen, states in this domain can be described using five predicates:

e (on-table ?x) — block ?x is on the table.
e (on ?x ?y) — block ?x is on top of block ?y.
e (holding ?x) — the robotic hand is holding block ?x.

e (clear ?x) — you are free to place something on top of block ?x. This implies that there
is nothing on top of it, and you are not holding it.

e (handempty) — the single robotic hand is not holding a block.
Assume the following 5-block problem instance with the blocks A,B,C,D,E:

e Current state: {(clear E), (on E D), (on D C), (on C B), (on B A), (ontable A), (handempty)}
— All blocks are in a single tower with E on top.

e Goal: {(on A B), (on B C), (on C D), (on D E)} — All blocks are in a single tower in the
other order.

This problem instance results in a total of 41 atomic facts that may be true or false, including
the initial and goal facts shown above. Therefore there are 24! & 2- 10! states. These can
be modified using 4 actions:

o (pickup ?x) picks up a block that is clear and on the table, given that you are not already
holding a block.

e (unstack ?x ?y) picks up a block that is clear and on top of another block, given that
you are not already holding a block.

e (putdown ?x) puts the block you are holding on the table.

e (stack ?x ?y) puts the block you are holding on top of a clear block.

For the purpose of this question, you should only require a general understanding of these
actions. However, the complete action specifications are also available in an appendix.

Question: The problem instance also has more than 10 fact landmarks that can be useful
for landmark-based heuristics. Please specify four of these. For each one, you should clearly
motivate why it is a fact landmark. The general definition of a fact Jandmark is not sufficient
as a motivation — you must also explain (at least briefly) why each landmark actually satisfies
this definition.

Please constrain your answer to the list of landmarks and your motivations, and do not explain
other aspects of landmark heuristics. (2p)

The following is a standard formulation of the Blocks World in PDDL.

(define (domain blocksworld)
(:requirements :strips)

(:predicates (clear 7x)
(on-table 7x)
(handempty)
(holding 7x)
(on 7x ?y))

(:action pickup :parameters (7ob)
:precondition (and (clear ?ob) (on-table 7ob) (handempty))
;effect (and (holding 7ob) (not (clear ?7ob)) (not (on-table 7ob))
(not (handempty))))

(:action putdown :parameters (7ob)
:precondition (holding 7ob)
:effect (and (clear ?ob) (handempty) (on-table ?ob)
(not (holding 7ob))))

(:action stack :parameters (7ob 7underob)
:precondition (and (clear ?underob) (holding 7ob))
:effect (and (handempty) (clear ?ob) (on 7ob 7underob)
(not (clear ?7underob)) (not (holding 70b))))

(:action unstack :parameters (7ob ?7underob)
:precondition (and (on 7ob ?underob) (clear ?7ob) (handempty))
reffect (and (holding 7ob) (clear 7underob)
(not (on ?o0b ?underob)) (not (clear 7ob)) (not (handempty)))))

2 Partial-Order Planning

We now consider partial-order planning. We use the standard logistics domain as defined
in Appendix A; please familiarize yourself with it before continuing.

We will use a problem instance containing the packages {p;, p,}, the trucks {t, t,} and the
three locations {l;, ,, 3}, none of which are airports.

In the initial state, we know that at(p,,1,), at(p,, 1), at(ty,[,), and at(t,, [,). Alllocations are
in the same city: {same-city(l,1') | [,1’ € {l;,1,,15}}. No packages are loaded into vehicles.

The goal is that at(p;, 1), at(p,, Iy), at(ty,1,), and at(t,, L,).

Below you will be required to demonstrate a number of partially ordered plans that could
be encountered during the planning process. Unless we explicitly say otherwise, you must
clearly show the following in each such plan:

e For each action, all preconditions above the action and all effects below the action.
(Or, if you write them horizontally: Preconditions to the left, effects to the right.)

o All other relevant structural features in the plan: precedence constraints (solid ar-
rows), causal links (dashed arrows) and threats.

You should do the following:

a) Show the initial partial plan 7, generated for this problem instance by a typical partial-
order plannet, such as the PSP planner in the course book or the planning procedure
illustrated during the course lectures. This is the partial plan that corresponds to the
first node (“root node”) generated in the search space. (1 point)

b) Show all the immediate successors of the initial partial plan. That is, demonstrate
all the different ways in which a standard PSP-like partially ordered planner might
extend 71, in a single step.

For this particular task you do not have to illustrate each successor plan graphically.
Instead, you can explain clearly in writing how each successor would extend m,. How-
ever, you still need to indicate all additions that would be made relative to the initial
partial plan, including new constraints and relations as discussed above! (2 points)

¢) Show a partial plan for this problem in which one or more threats appear. Indicate
all threats clearly, if there is more than one, and explain why they are threats. (Note
that you might be able to extend this plan into a solution in the next subquestion.)
(2 points)

d) Show a complete solution plan for this problem instance, making good use of both
trucks to efficiently resolve all goals. Make sure that actions are not temporally con-
strained relative to each other unless this is necessary in order to achieve the goal.
(1 point)

3 SATisfiability-based Planning

We will now consider planning based on propositional satisfiability (“SAT planning”).

a) SAT-based planners must be able to find solution plans of arbitrary length, where the
length is not known in advance. In contrast, the general SAT solvers that they are based

on require an input containing a fixed and finite number of boolean propositions. How

is this discrepancy handled by a SAT planner? (2 points)

b) SAT planners require frame axioms (for example, explanatory frame axioms) to ensure

that the answer from the SAT solver corresponds to a valid plan.

Explain what the frame axioms “say” and what would happen if they were not in-

cluded. You do not need to be able to write a frame axiom formula, but should still be

able to explain the concept sufficiently clearly that someone with experience in SAT

solving could define axioms based on your explanation.

Hint: If this question had been about exclusion axioms, you could have answered that

exclusion axioms “say” that if one action occurs at a particular time step, then no other

action can occur at the same time step; if this axiom was omitted, then plans could contain

concurrent actions.

Demonstrate / illustrate your answer using a concrete example. The example does

not have to involve an entire SAT assignment and SAT formula processed from begin-

ning to end, as this would take considerable time to generate by hand. It is sufficient

to illustrate the most central aspects of how the planning process could return invalid

plans given a lack of frame axioms.

(2 points)

4 Markov Decision Processes

a)

b)

c)

The states and transitions involved in a classical planning problem can be described
using a specific type of state transition system, which is specified as a tuple (S, ...)
that includes a finite set of states and some additional information that you should
already be aware of. This is also the case for the states and transitions involved in a
fully observable Markov Decision Process (MDP).

However, there is a key difference in expressivity between classical planning problems
and MDP problems, which is also reflected in the information provided by the respec-
tive state transition systems. What is this difference, and how is it represented in the
state transition system (S, ...) of an MDP? (1 point)

Markov Decision Processes are characterized by the Markov property. What is the
Markov property? (1 point)

Markov Decision Processes often use a discount factor. Which value related to MDPs
is calculated using this discount factor, and how is the discount factor used in the
calculations? The exact formula is not required - an intuitive description is sufficient,
as long as it gives a clear picture of how discount factors are used.

Also explain why the use of a discount factor is not only a mathematical trick but
in many cases results in a better model of our preferences/goals/desires than if the
discount factor had not been used. (2 points)

A The Logistics Domain

The standard logistics domain contains a set of packages that should be transported to
their destinations. A package can be transported by truck between any two locations in
the same city, and by airplane between special airport locations in different cities. Since
trucks cannot deliver packages directly to other cities, and airplanes cannot visit arbitrary
locations, delivering a package might require using a truck to move it to an airport, using
an airplane to move it to another city and then once again using a truck to get the package
to its final destination.

We assume the foHowing types of objects:
e thing, with subtypes package and vehicle
¢ vehicle, with subtypes truck and airplane
e location, with subtype airport

A model of this domain may include the following operators. For Simple Task Network
planning, these operators correspond directly to primitive tasks.

o load-truck(package, truck, location) loads a package into a truck, given that they are both
at the same location. The truck can hold an arbitrary number of packages.

¢ unload-truck(package, truck, location) unloads a package from a truck in the current
location.

¢ load-plane(package, airplane, location) loads a package into a plane, given that they are
both at the same location. The plane can hold an arbitrary number of packages.

e unload-plane(package, airplane, location) unloads a package from an airplane in the
current location.

e drive-truck(truck, location, location) drives a truck between locations in the same city.
o fly-plane(plane, airport, airport) flies a plane between two airports in different cities.
We assume the following predicates are available:

e at(thing,loc) — the package or vehicle thing is at the location loc. Note that a package
“at” a certain location cannot be “in” a vehicle in the same state.

e in(x,vehicle) — the package x is in the given vehicle.

¢ same-city(loc1,loc2) — the given locations are in the same city. Note that a location must
be in the same location as itself.

We assume a typed domain model where each operator parameter and predicate parameter
is given a specific type and cannot take on values outside that type. For example, if ¢ is
a truck, an expression such as at(t,,t;) is not merely false but incorrect. Nevertheless,

we provide the following type predicates that may be useful in some situations: thing(x),
package(x), vehicle(x), truck(x), airplane(x), location(x) and airport(x).

We can then define the operators more formally as shown on the following page:

load-truck(package pkg, truck trk, location loc)
Precondition: at(pkg, loc) A at(trk, loc)
Effects: —at(pkg, loc), in(pkg, trk)

load-airplane(package pkg, airplane plane, location loc)
Precondition: at(pkg, loc) A at(plane, loc)
Effects: —at(pkg, loc), in(pkg, plane)

unload-truck({package pkg, truck trk, location loc)
Precondition: in(pkg, trk) A at(trk, loc)
Effects: —in(pkg, trk), at(pkg, loc)

unload-airplane(package pkg, airplane plane, location loc)
Precondition: in{pkg, plane) A at(plane, loc)
Effects: —in(pkg, plane), at(pkg, loc)

drive-fruck(truck trk, location from, location to)
Precondition: at(trk, from) A same-city(from, to)
Effects: —at(trk, from), at(irk, to)

fly-airplane(airplane plane, airport from, airport to)
Precondition: at(p/ane, from)
Effects: —at(plane, from), at(plane, to)

