Forsattsblad till skriftlig
tentamen vid Linkopings

universitet
Datum for tentamen B 2016-06-04
Sal (1) Ul
Tid | 1418
Kurskod ~ [TDDDA438
Provkod ITEN1
Kursnamn/beniimning Automatisk planering
Provnamn/benimning ‘ Skriftlig tentamen
Institution ’ IDA
Antal uppgifter som ingér i 5
tentamen)
Jour/Kursansvarig Jonas Kvarnstrém
Ange vem som besoker salen o ,
l'lj‘eluefon under skrivtiden B ,§|0704—737579, - B
|Bes5ker salen ca klockan |Om mojligt - ring gérna istéllet
Kursadministrator/kontaktperson |[Anna Grabska Eklund, ankn. 2362,
(namn + tfnr + mailaddress) ~ |anna.grabska.eklund@gmail.com
Tillitna hjilpmedel nga
Ovrigt , |

|Antal exemplar i pésen |

TDDD48 Automated Planning 2016-06-04

Important Instructions: Read before you begin!

e Though the questions are in English, feel free to answer in Swedish if you prefer!
Det gér bra att skriva pa svenskal

e Clear and comprehensible explanations and motivations are always required. This does
not necessarily mean that each answer should be a long essay. What is important is
that all the relevant facts are present and clearly explained.

e Make an effort to write explanations that can be understood by someone who does not
already know the correct answer. If your answer explains a topic well enough that a
fellow student could learn something new from the answer and/or apply it in practice,
then you have probably succeeded. Conversely, if we ask how HTNs work, saying that
“there are methods and operators and you construct a tree using patterns and there
can be constraints too, and there’s no goal” does not provide much in terms of useful
information, and certainly will not give you a full score.

e To see if you have succeeded, turn the tables and try to misunderstand.
Specifically, after you write an answer, go back and see if you can creatively misinter-
pret the answer. If so, clarify, clarify, clarify!

e Concrete examples or counterexamples may be useful as part of a motivation. If so,
please make sure you include all relevant information about the example you have
chosen to use. What is relevant naturally depends on how you use the example.

e When asked to provide examples or illustrate something through a planning problem
instance, save time by keeping the example as small as possible.

1 General Concepts in Automated Planning

As you know, lifted planning is a general technique applicable to a variety of search spaces

and planning algorithms. During the lectures, we discussed this mostly in the context of

lifted partial-order planning, but since the technique itself is general, it could also be applied

to for example backward planning or HTN planning.

Explain what lifted planning is in general. Then give a concrete example of why it can be

useful when generating partial-order plans in particular. In this example you must:

Show/illustrate a small lifted partial-order plan structure, or a sufficiently informa-
tive fragment of one that makes it clear that you know how partial order plans are

structured.

Contrast it against an alternative non-lifted partial-order plan structure. This plan
structure must also be clearly illustrated. Alternatively, show clearly and concretely
how the lifted plan you already illustrated would differ if it was non-lifted.

Explain what is better about the lifted version: In which way does it “help” you to use
a lifted plan when you are searching for a solution? (3 points)

2 SATisfiability-based Planning

We will now consider planning based on propositional satisfiability (“SAT planning”).

a) A SAT planner translates a planning problem into a set of boolean propositions and

b)

c)

a set of formulas over-these propositions. Typically, there are two specific types of
information encoded as boolean propositions. In other words, once a SAT solver has
found a solution, two specific types of information can be inferred from the values of
the boolean propositions. Which ones? (2 points)

SAT planners must be able to find solution plans of arbitrary length, where the length
is not known in advance. In contrast, the general SAT solvers that they are based on
require an input containing a fixed and finite number of boolean propositions. How
is this discrepancy handled by a SAT planner? (2 points)

SAT planners require frame axioms (for example, explanatory frame axioms) to ensure
that the SAT solver gives correct results that correspond to valid plans.

Explain how planning could go wrong if frame axioms were not included in the SAT
translation of a planning problem. Also demonstrate using a concrete example. The
example does not have to involve an entire SAT assignment and SAT formula processed
from beginning to end, as this would take considerable time to generate by hand. It
is sufficient to illustrate the most central aspects of how the planning process could
return invalid plans given a lack of frame axioms. (2 points)

3 Heuristics and Search Guidance

a) Landmarks. We use the logistics domain (Appendix A) with the following problem

instance:

— There are two packages {p;, p,}, two trucks {t,, t,} and three locations {1, L, I3},
none of which are airports.

— 5 = {at(py, 1), at(ps, L), at(ty, 1), at(ty, 1)} U {same-city(1, 1) | L, € {L1, 1, 15}},
where the latter part indicates that all locations are in the same city. No packages
are loaded into vehicles and we do not use type predicates.

— The goal is g = {at(p;,13), at(p,, l5), at(ty,), at(ty, 1)}
Your task:
— Explain: What is a disjunctive action landmark?

— Show three distinct (disjunctive or non-disjunctive) action landmarks for the

problem instance above.

— Explain why these are landmarks. The explanation should not repeat the defini-
tion of a landmark. Instead it must show why the landmarks satisfy the definition.

(3 points)

b) Pattern databases. Describe the general ideas behind standard pattern database
(PDB) heuristics, assuming that a single pattern is used. Specifically:

— A fundamental property of PDB heuristics is the use of a pre-processing phase that
is specific to a problem instance but is performed before search begins. Assume
as given a problem instance & = (0, s,, g) in the state variable representation,
with no additional PDB-specific information provided. Describe what the pre-
processing phase does with this problem instance, step by step. Also describe
what the resulting output will consist of.

- How is a heuristic value h(s) calculated when a new state s is encountered during
search, if we use the standard PDB heuristic (still using a single pattern)? How
is the result of the pre-processing phase used during this calculation?

(3 points)

¢) Combining heuristics. There are several techniques for “combining” a set of admis-
sible heuristics into a new and stronger, but still admissible, heuristic function.

Describe a technique that is applicable for every set of admissible heuristics, regardless
of how these heuristics are computed. Explain why the resulting value is admissible.

(2 points)

4 Planning with Incomplete Information

a) Explain the meaning of non-observable planning. (For example, what isn’t observable?
What do you know, what don’t you know, and when?) (1 point)

b) Explain the meaning of non-deterministic planning and probabilistic planning, and how
these two forms of planning differ from classical forms of planning.

Your explanation could be based on how the associated state transition systems differ
and/or on a more “intuitive” explanation. In the latter case, remember that explana-
tions must still be sufficiently clear that someone who is not familiar with the concepts
learns what the concepts mean. (2 points)

5 Motion Planning

In motion planning, what is the workspace and what is the configuration space? Explain
" this on a conceptual level. Also give concrete examples: What might the workspace and
configuration space be for a typical car, for a humanoid robot, or for some other non-trivial
entity? (2 points)

A The Logistics Domain

The logistics domain contains a set of packages that should be transported to their destina-
tions. A package can be transported by truck between any two locations in the same city, and
by airplane between special airport locations in different cities. Since trucks cannot deliver
packages directly to other cities, and airplanes cannot visit arbitrary locations, delivering a
package might require using a truck to move it to an airport, using an airplane to move it
to another city and then once again using a truck to get the package to its final destination.

We assume the following types of objects:
e thing, with subtypes package and vehicle
e vehicle, with subtypes truck and airplane
e location, with subtype airport
A model of this domain may include the following operators.

e load-truck(package, truck, location) loads a package into a truck, given that they are both
at the same location. The truck can hold an arbitrary number of packages.

e unload-truck(package, truck, location) unloads a package from a truck in the current
location.

e load-plane(package, airplane, location) loads a package into a plane, given that they are
both at the same location. The plane can hold an arbitrary number of packages.

e unload-plane(package, airplane, location) unloads a package from an airplane in the
current location.

e drive-truck(truck, location, location) drives a truck between locations in the same city.
e fly-plane(plane, airport, airport) flies a plane between two airports in different cities.
We assume the following predicates are available:

e at(thing,loc) — the package or vehicle thing is at the location loc. Note that a package
“at” a certain location cannot be “in” a vehicle in the same state.

e in(x,vehicle) — the package x is in the given vehicle.

e same-city(loc1,loc2) — the given locations are in the same city. Note that a location must
be in the same location as itself.

We assume a typed domain model where each operator parameter and predicate parameter
is given a specific type and cannot take on values outside that type. For example, if t; is
a truck, an expression such as at(ty,t;) is not merely false but incorrect. Nevertheless,
we provide the following type predicates that may be useful in some situations: thing(x),
package(x), vehicle(x), truck(x), airplane(x), location(x) and airport(x).

We can then define the operators more formally as shown on the following page:

load-truck(package pkg, truck trk, location foc)
Precondition: at(pkg, loc) A at(trk, loc)
Effects: nat(pkg, loc), in(pkg, trk)

load-airplane(package pkg, airplane plane, location /oc)
Precondition: at{pkg, loc) A at(plane, loc)
Effects: —at(pkg, loc), in(pkg, plane)

unload-truck(package pkg, truck trk, location /oc)
Precondition: in(pkg, trk) A at(trk, loc)
Effects: —in(pkg, trk), at(pkg, loc)

unload-airplane(package pkg, airplane plane, location loc)
Precondition: in(pkg, plane) A at(plane, loc)
Effects: nin(pkg, plane), at(pkg, loc)

drive-truck(truck trk, location from, location to)
Precondition: at(trk, from) A same-city(from, to)
Effects: —at(trk, from), at(irk, to)

fly-airplane(airplane plane, airport from, airport o)
Precondition: at(plane, from)
Effects: —at(plane, from), at(plane, to)

