% Forsittsblad till skriftlig

v,
oy <

~" tentamen vid Linkopings

universitet

ITid

418

[Datum for tentamen 20150605
sal@ IBTBI o

[urskod — [IODD4g

[Provked

ITENT

|Kursnamn/benimning
(Provnamn/beniimning

Automat;skrrpléhéﬁng

| Skriftlig tentamen

Institution

|Antal uppgifter som ingar i
[tentamen

4

|Jour/Kursansvarig

i

|Ange vem som besdker salen

|Jonas Kvarnstrém

[Telefon under skrivtiden

__[oroa737579

[Besiker salen ca klockan

Kursadministratér/kontaktperson||Anna Grabska Eklund, anna.grabska.eklund@liu.se,

|(namn + tfor + mailaddress)

jjankn. 2362

[Tillitna hjilpmedel

finga

[Ovrige

|Antal exemplar i pésen

29

TDDD48 Automated Planning 2015-06-05

Important Instructions: Read before you begin!

e Though the questions are in English, feel free to answer in Swedish if you prefer!

e Clear and comprehensible explanations and motivations are always required. This does
not necessarily mean that each answer should be a long essay. What is important is
that all the relevant facts are present and clearly explained.

e Make an effort to write explanations that can be understood by someone who does not
already know the correct answer. If your answer explains a topic well enough that a
fellow student could learn something new from the answer and/or apply it in practice,
then you have probably succeeded. Conversely, if we ask how HTNs work, saying that
“there are methods and operators and you construct a tree using patterns and there
can be constraints too, and there’s no goal” does not provide much in terms of useful
information, and certainly will not give you a full score.

e To see if you have succeeded, turn the tables and try to misunderstand.
Specifically, after you write an answer, go back and see if you can creatively misinter-
pret the answer. If so, clarify, clarify, clarify!

¢ Concrete examples or counterexamples may be useful as part of a motivation. If so,
please make sure you include all relevant information about the example you have
chosen to use. What is relevant naturally depends on how you use the example.

e When asked to provide examples or illustrate something through a planning problem
instance, save time by keeping the example as small as possible.

1 Fundamental Concepts: Relaxation

a) Relaxation. Let # = (0,s,, g) be an arbitrary classical planning problem. When is
P' = (0',s),8') a relaxed version of 2? That is, what criterion or criteria must be
satisfied for &’ to be a relaxation of #?

Note that we are discussing relaxation in general, as opposed to some specific type
of relaxation. Note also that you should describe the exact requirements for relax-
ation. That is, your definition should be sufficient and necessary, rather than covering
a special case. (2 points)

b) Delete relaxation. We use the standard logistics domain as defined in Appendix A:

- The problem instance contains the packages {p,, p,}, the trucks {t,, t,} and the
three locations {I;,1,, 3}, none of which are airports.

— Let O be the set of operators in this domain.

— The initial state is
so = {at(py, 1), at(py, L), at(ty, 1), at(ty, L) u{same-city(L, ') | 1,1 € {1y, 15, 15}},
where the latter part indicates that all locations are in the same city. No packages
are loaded into vehicles and we do not use type predicates.

— The goal (which will actually not be used in this question) is
g = {at(pl, 13)5 at(pZ! 13), at(tli 12): at(t2! 12)}'
This yields a problem instance # = (0, s, g). Let 2’ = (0',s;, g’) be the delete-relaxed

version of 2. Then:

— Show the exact sequence of states s, s],s;,s; generated by executing the action
sequence (load-truck(ps, t,, I), drive-truck(ty, I, [;), unload-truck(p,, t,,1;)) in the
delete-relaxed problem instance &'. That is, show s, and then each of the three
consecutive states resulting from each new action being executed.

You should omit instances of same-city, since they are identical in all states.

: 5 un . ;
You may shorten the answer by representing non-initial states $1555,5, as differ-
ences compared to s;.

— Generate a delete-relaxed plan beginning in s, and reaching precisely the state
s = {at(ty, 1), at(ts, 1), in(ps, t1),in(py, t2)} U {same-city(1, 1) | 1,1" € {11, 15, 15}},
or prove that such a plan does not exist in the delete-relaxed problem instance.

(2 points)

2 Heuristics and Search Guidance

a)

b)

c)

Landmarks. Explain: What is a disjunctive action landmark?

Then show three distinct (disjunctive or non-disjunctive) action landmarks for the
logistics problem instance in question 1b, and explain why these are landmarks.

The explanation should not repeat the definition of a landmark. Instead it must show
why the landmarks satisfy the definition. (2 points)

Pattern databases. Describe the general ideas behind standard pattern database
(PDB) heuristics, assuming that a single pattern is used. Specifically: (3 points)

— PDB heuristics include a pre-processing phase that is specific to a problem in-
stance but is performed before search begins. Assume as given a problem in-
stance # = (0,sy, g) in the state variable representation, with no additional
PDB-specific information provided. Describe what the pre-processing phase does
with this problem instance, step by step. Also describe what the resulting output
will consist of.

- Aplanner must be able to calculate a heuristic value h(s) for every state s encoun-
tered during the search process. How is h(s) calculated for the standard PDB
heuristic (still using a single pattern)? How is the result of the pre-processing
phase used during this calculation?

Pattern databases. Some variations of PDB heuristics remain admissible despite the
fact that they combine multiple heuristic estimates based on multiple different pat-
terns.

Describe a technique for achieving this that is applicable to every combination of ad-
missible heuristic estimates, regardless of whether pattern databases are used or not.

Also, describe a technique for doing this that is specifically based on limiting which
patterns can be selected and used in the combined heuristic function. What are the
limitations / restrictions that are applied when patterns are selected, how are the
heuristic values calculated and combined, and why is the resulting value admissible?
(2 points)

3 Partial-Order Planning

We now consider partial-order planning. We again use the standard logistics domain as
defined in Appendix A, with a problem instance containing the packages {p,, p,}, the trucks
{t,, t;} and the three locations {1, 1,, [3}, none of which are airports.

In the initial state, we know that at(p,, ,), at(p,, 1,), at(t,,1,), and at(t,, l,). All locations are
in the same city: {same-city(l,1') |11’ € {l,, [5,13}}. No packages are loaded into vehicles.

The goal is that at(p,, 1), at(p,, 1), at(t,,1,), and at(t,, L,).
You should do the following (see also notes below):

a) Show the initial partial plan 1, generated for this problem instance by a typical partial-
order planner, such as the PSP planner in the course book. This is the partial plan that
corresponds to the first node (“root node”) generated in the search space.

Identify all flaws in this partial plan, and show why they are flaws (explain what a
flaw is and show why the flaws you have identified satisfy the criteria). (2 points)

b) Show all the immediate successors of the initial partial plan. That is, demonstrate
all the different ways in which a standard PSP-like partially ordered planner might
extend 7, in a single step.

For this particular task you do not have to illustrate each successor plan graphically.
Instead, you can explain clearly in writing how each successor would extend 7o. How-
ever, you still need to indicate all changes that would be made, including new con-
straints and relations! (2 points)

¢) Show a partial plan for this problem in which one or more threats appear. Indicate all
threats clearly. Explain in text why they are threats ~ which criteria have to be satisfied
for the threat to exist. (2 points)

Note: For each action in a partial plan, you must clearly show each precondition above
the action and each effect below the action (or to the left / to the right, if you choose this
direction).

You must also indicate all other relevant structural features in the plan. Explain your nota-
tion and omit nothing without proper explanation. (For example, the lecture notes explicitly
stated that certain kinds of arrows were omitted for clarity; you can also omit these as long
as you say they are omitted and explain how one can infer which arrows should actually be
there!)

Hint: You may benefit from quickly sketching plans on a separate paper first,

4 Planning with Incomplete Information

For this question, I would like to remind everyone that good answers should clearly and
unambiguously explain concepts as if the reader had not already heard of them.

a) Explain the meaning of, and the differences between, three types of planning: Fully
observable, partially observable and non-observable.

Hint: What can or can’t we observe? When would such observations be made? When
could they be useful? (2 points)

b) Explain the meaning of, and the differences between, non-deterministic planning and
probabilistic planning. (2 points)

¢) Both classical planning and planning using Markov Decision Processes can be char-
acterized in terms of state transition systems. What is the most significant difference
between the state transition system (structure) used for classical planning and the one
used for Markov Decision Processes? (1 point)

A The Logistics Domain

The logistics domain contains a set of packages that should be transported to their destina-
tions. A package can be transported by truck between any two locations in the same city, and
by airplane between special airport locations in different cities. Since trucks cannot deliver
packages directly to other cities, and airplanes cannot visit arbitrary locations, delivering a
package might require using a truck to move it to an airport, using an airplane to move it
to another city and then once again using a truck to get the package to its final destination.

We assume the following types of objects:
e thing, with subtypes package and vehicle
e vehicle, with subtypes truck and airplane
e location, with subtype airport
A model of this domain may include the following operators.

e load-truck(package, truck, location) loads a package into a truck, given that they are both
at the same location. The truck can hold an arbitrary number of packages.

e unload-truck(package, truck, location) unloads a package from a truck in the current
location.

¢ load-plane(package, airplane, location) loads a package into a plane, given that they are
both at the same location. The plane can hold an arbitrary number of packages.

e unload-plane(package, airplane, location) unloads a package from an airplane in the
current location.

e drive-truck(truck, location, location) drives a truck between locations in the same city.
e fly-plane(plane, airport, airport) flies a plane between two airports in different cities.
We assume the following predicates are available:

e at(thing,loc) — the package or vehicle thing is at the location loc. Note that a package
“at” a certain location cannot be “in” a vehicle in the same state.

e in(x,vehicle) - the package x is in the given vehicle.

e same-city(loc1,loc2) - the given locations are in the same city. Note that a location must
be in the same location as itself.

We assume a typed domain model where each operator parameter and predicate parameter
is given a specific type and cannot take on values outside that type. For example, if ¢, is
a truck, an expression such as at(t,, t;) is not merely false but incorrect. Nevertheless,
we provide the following type predicates that may be useful in some situations: thing(x),
package(x), vehicle(x), truck(x), airplane(x), location(x) and airport(x).

We can then define the operators more formally as shown on the following page:

load-truck(package pkg, truck trk, location loc)
Precondition: at(pkg, loc) A at(trk, loc)
Effects: —at(pkg, loc), in(pkg, trk)

load-airplane(package pkg, airplane plane, location loc)
Precondition: at(pkg, loc) A at(plane, loc)
Effects: —at(pkg, loc), in(pkg, plane)

unload-truck(package pkg, truck trk, location loc)
Precondition: in(pkg, trk) A at(trk, loc)
Effects: min(pkg, trk), at(pkg, loc)

unload-airplane(package pkg, airplane plane, location loc)
Precondition: in(pkg, plane) A at(plane, loc)
Effects: —in(pkg, plane), at(pkg, loc)

drive-truck(truck trk, location from, location to)
Precondition: at(trk, from) A same-city(from, to)
Effects: —at(trk, from), at(trk, to)

fly-airplane(airplane plane, airport from, airport to)
Precondition: at(plane, from)
Effects: —at(plane, from), at(plane, to)

