;% Forsattsblad till skriftlig tentamen
»2% vyid Linkdpings Universitet

Datum for tentamen 2014-10-23

a1 @ G36

Tid 14-18

Kurskod TDDD48

Provkod TEN1
Kursnamn/benidmning Automatisk planering
Provnamn/benémning Skriftlig tentamen
Institution IDA

Antal uppgifter som ingar i 4

tentamen

Jour/Kursansvarig Tonas Kvarnstrém

Ange vem som besdker salen

Telefon under skrivtiden 0704-737579

Besiker salen ca klockan ja
Kursadmlnlstratqr/kontaktperson Anna Grabska Eklund, ankn. 2362, anna.grabska.eklund @liu.se
(namn + tfor + mailaddress)

Tillatna hjilpmedel inga

Ovrigt

Antal exemplar i pasen




Exam: TDDD48 Automated Planning 2014-10-23

Important Notes

Read the following before you begin!
e Though the questions are in English, feel free to answer in Swedish if you prefer!

e Clear and comprehensible explanations and motivations are always required. This does not
necessarily mean that each answer should be a long essay. What is important is that all the
relevant facts are present and clearly explained. Write an explanation that can be understood

and applied by someone who does not already know the answer!

e Concrete examples or counterexamples may be useful as part of a motivation. If so, please
make sure you include all relevant information about the example you have chosen to use.

What is relevant naturally depends on how you use the example.

e When asked to provide examples or illustrate something through a planning problem instance,

save time by keeping the example as small as possible.



1 Fundamental Concepts

We know the following:

A sequential solution plan 7 for a classical problem instance P is redundant iff it is possible to
remove one or more actions from 7 in such a way that the remaining actions, in their original or-
der, still form a solution that achieves the goal. For example, the solution [ay,ay,as,04,d5,d6)

is redundant if [aq, ay, a3, ae] is also a solution.

e A solution plan 7 for a given problem instance is minimal iff there is no other solution for P

that contains strictly fewer actions.

The standard logistics domain, where a set of packages should be transported to their destinations,

is defined in Appendix A. You should do the following:

a)

b)

Create a classical planning problem instance for this domain and show a redundant solution
for this problem instance. Show why the solution is redundant — in other words, show which

actions can be removed from the solution. (1 point)

Note: You must provide formulas defining the exact initial state and goal of this problem
instance (a vague description in natural language is not sufficient). To save time, make the

problem instance small.

Create a classical planning problem instance for this domain and show a solution 7 for this
problem instance, such that 7 is not redundant but still not minimal. Explain / motivate clearly

why the solution is not redundant and why it is not minimal. (1 point)

Note: You must provide formulas defining the exact initial state and goal of this problem
instance (a vague description in natural language is not sufficient). To save time, make the

problem instance small.

Let P, = (0,50,£1) and P, = (0,50, g2) be two classical planning problems that share the same

operators and initial state. Let m; = [ai,...,a,] be a solution of length n for P;, and let my =

[by,..

c)

., b,] be a solution of the same length for P,.

Suppose that the concatenated action sequence 7y - 7t = [aj,...,ap, b1s..., b, ] happens to be
executable starting at state sy, Can we then be certain that it is also a solution for P, (achieves
the goals of P,)? Motivate clearly why this is or is not the case. If you want to provide an

example, you may use the logistics domain or any other domain. (1 point)



2 Heuristics and Search Guidance

a)

b)

)

d)

Is a pattern database heuristic a form of relaxation heuristic? Is it a form of delete relaxation
heuristic? In each case, motivate why / why not. (2 points)

Explain: What is a landmark? (Note that there is a similar concept called an action landmark.
We are asking about a standard (non-action) landmark.)

Then construct a simple problem instance in the logistics domain (Appendix A), with an initial
state and a goal, and show two distinct landmarks for this problem instance. Explain why these
are landmarks. Make sure you provide sufficient information about the problem instance so
that this can be verified. (2 points)

Give an example of how landmarks can be used in the definition of a heuristic function for
state-space planning. Keep the description general as opposed to applying it to a specific state
or problem instance! (1 point)

Recall that the Fast Forward heuristic hgz(s) is based on the use of planning graphs. When hgp(s)
is calculated for a specific state s that is encountered during the search process, a planning
graph is generated — but not for the original search problem.

Explain how hp “modifies” a planning problem before a planning graph is constructed.
Give at least one example of why this speeds up the construction of the graph.

Also explain approximately how the heuristic value is then extracted from the planning graph.
(2 points)



3 Partial-Order Planning

We now consider partial-order planning. We use the standard logistics domain as defined in Ap-
pendix A, with a problem instance containing the packages {p1,py}, the trucks {t;, t;} and the three
locations {l,15,13}, none of which are airports.

In the initial state, we know that at(p, 1), at(p, 1), at(ty,12), and at(t,,1,). All locations are in the
same city: {same-city(l,1') | [l € {l3,15,13}}. No packages are loaded into vehicles.

The goal is that at(ps, 13), at(p, 13), at(ty, 1,), and at(ts, 1)
You should do the following:

a) Show the initial partial plan 7, generated for this problem instance by a typical partial-order
planner, such as the PSP planner in the course book. This is the partial plan that corresponds
to the first node (“root node”) generated in the search space. (1 point)

b) Show all the immediate successors of the initial partial plan. That is, demonstrate all the
different ways in which a standard PSP-like partially ordered planner might extend 7y in a

single step.

For this particular task you do not have to illustrate each successor plan graphically. Instead,
you can explain clearly in writing how each successor would extend m,. However, you still
need to indicate all changes that would be made, including new constraints and relations!
(1 point)

¢) Show a partial plan for this problem in which one or more threats appear. Indicate all threats
clearly. (Note that you might be able to extend this plan into a solution below.) (1 point)

d) Show a complete solution plan for this problem instance, making good use of both trucks to
efficiently resolve all goals. Make sure that actions are not temporally constrained relative to
each other unless this is necessary in order to achieve the goal. (1 point)

Note: For each action in a partially ordered plan, you must clearly show each precondition above the
action and each effect below the action. You must also indicate all other relevant structural features

in the plan: precedence constraints (solid arrows), causal links (dashed arrows) and threats.

4 Neo-Classical Planning

Recall that planning techniques that generate classical plans for classical planning domains, but
that use alternative and non-trivial representations of search spaces, are called neo-classical. Such
techniques include SAT planning (planning based on translations into propositional satisfiability)
and GraphPlan (based on planning graphs).

a) In SAT planning, we may use complete exclusion axioms. What is the purpose of such axioms

and when would we want to avoid using them? (1 point)



A The Logistics Domain

The standard logistics domain contains a set of packages that should be transported to their desti-
nations. A package can be transported by truck between any two locations in the same city, and by
airplane between special airport locations in different cities. Since trucks cannot deliver packages
directly to other cities, and airplanes cannot visit arbitrary locations, delivering a package might
require using a truck to move it to an airport, using an airplane to move it to another city and then
once again using a truck to get the package to its final destination.

We assume the following types of objects:
e thing, with subtypes package and vehicle
e vehicle, with subtypes truck and airplane
e location, with subtype airport
A model of this domain may include the following operators.

e load-truck(package, truck, location) loads a package into a truck, given that they are both at the
same location. The truck can hold an arbitrary number of packages.

e unload-truck(package, truck, location) unloads a package from a truck in the current location.

e load-plane(package, airplane, location) loads a package into a plane, given that they are both at
the same location. The plane can hold an arbitrary number of packages.

e unload-plane(package, airplane, location) unloads a package from an airplane in the current lo-
cation.

e drive-truck(truck, location, location) drives a truck between locations in the same city.
e fly-plane(plane, airport, airport) flies a plane between two airports in different cities.
We assume the following predicates are available:

e at(thing,loc) — the package or vehicle thing is at the location loc. Note that a package “at” a
certain location cannot be “in” a vehicle in the same state.

e in(x,vehicle) — the package x is in the given vehicle.

e same-city(loc1,loc2) — the given locations are in the same city. Note that a location must be in
the same location as itself.

We assume a typed domain model where each operator parameter and predicate parameter is given a
specific type and cannot take on values outside that type. For example, if t; is a truck, an expression
such as at(ty, t1) is not merely false but incorrect. Nevertheless, we provide the following type
predicates that may be useful in some situations: thing(x), package(x), vehicle(x), truck(x), airplane(x),
location(x) and airport(x).

We can then define the operators more formally as shown on the following page:



load-truck(package pkg, truck trk, location loc)
Precondition: at(pkg, loc) A at(trk, loc)
Effects: —at(pkg, loc), in(pkg, trk)

load-airplane(package pkg, airplane plane, location loc)
Precondition: at(pkg, loc) A at(plane, loc)
Effects: —at(pkg, loc), in(pkg, plane)

unload-truck(package pkg, truck trk, location loc)
Precondition: in(pkg, trk) A at(trk, loc)
Effects: —in(pkg, trk), at(pkg, loc)

unload-airplane(package pkg, airplane plane, location loc)
Precondition: in(pkg, plane) A at(plane, loc)
Effects: —in(pkg, plane), at(pkg, loc)

drive-truck(truck trk, location from, location to)
Precondition: at(irk, from) A same-city(from, to)
Effects: —at(trk, from), at{irk, to)

fly-airplane(airplane plane, airport from, airport to)
Precondition: at(plane, from)
Effects: ~at(plane, from), at{plane, to)




