é& Forséttsblad till skriftlig tentamen vid

Lmkopmgs Universi

1tet

Datum for tentamen -

Sal (1)

[2013-06-01 o

ITER4

Om tentan gar i flera salar ska du blfoga ett

forsittsblad till varje sal och ringa in vilken sal som

avses |

Td ll4 18

Kursked —— — TDppsag

Provkod TENL
Kursnamn/benimning |Automatisk planering |
[Provnamn/benimning [Skriftlig tentamen

'Instltutlon]

Antal uppglfter som mgar i
[tentamen

4

DA

Jo ur/Kursansvarlg
[Ange vem som besker salen

Jonas Kvamstrﬁm

|Telefon u_l_!_slgr_slsrivtideﬁ B

~ 0704-737579,

Besdker salen ca kL.

: Kursadministrator/kontaktperson
|(namn + tfnr + mailaddress)

| _VfJa négon gang efter 15 ,. M
|Anna Grabska Eklund,

ankn. 2362,

| ___annagrabska.eklund@liu.se
.Elllatna h_] alpmedej __ |inga . |
Ovrigt 4
;Vllken typ av papper ska U;Uerat

|/anvindas, rutigt eller llnjerat N B

;}Antal exemplar i pasen

Exam: TDDD48 Automated Planning 2013-06-01

Important Notes

Read the following before you begin!
e Though the questions are in English, you may answer in Swedish if you prefer!

e Clear and comprehensible explanations and motivations are always required. This does not
necessarily mean that each answer should be a long essay. What is important is that all the
relevant facts are present and clearly explained.

e Concrete examples or counterexamples may be useful as part of a motivation. If so, please
make sure you include all relevant information about the example you have chosen to use,
What is relevant naturally depends on how you use the example.

1 Fundamental Concepts

a) Whenis an action relevant? When/where is the concept of relevance used in planning, and
in what way is it useful? (2 points)

b) Lifted planning is a general technique applicable to a variety of search spaces and planning
algorithms. During the lectures, we specifically discussed lifted partial-order planning. Ex-
plain what lifted planning is in general, and give a concrete example of why it can be useful
when generating partial-order plans. In this example you should show a small lifted plan
(or a reasonable fragment of one), contrast it against a non-lifted alternative, and explain
what is better about the lifted version. (2 points)

2 Heuristics and Search Guidance

a)

b)

9]

d)

e)

Many heuristics work by solving subproblems of the actual problem being solved, and then
combining the costs of these subproblems in some way. For example, a single subprob-
lem for the h, heuristic is constructed by selecting two literals from the “rea]” goal, and
then (under)estimating the cost of achieving only these two literals. The heuristic then
solves one such subproblem for every pair of goal literals, and returns the maximum of all
calculated costs.

What is the corresponding way in which subproblems are constructed for a pattern database
heuristic? Describe the general steps and ideas involved. Assume that the problem is al-
ready in state-variable representation as opposed to classical representation, so that an
initial conversion phase (as described during the lectures) is not necessary. (2 points)

Describe the general relaxation principle. In particular: Given a problem, what charac-
terizes a relaxed problem? How, exactly, can a relaxed problem be used to calculate an
admissible heuristic value for a particular state in the original problem? Why does this
method (calculation) guarantee admissibility? (2 points)

Is a pattern database heuristic a form of relaxation heuristic? Is it a form of delete relaxation
heuristic? In each case, motivate why / why not. (2 points)

What is a landmark (not an action landmark)? Explain the general definition of a landmark.
Then give an example of a concrete landmark from a problem instance in a simple standard
planning domain such as for example Logistics, Blocks World or Towers of Hanoi. Explain
why this is a landmark and make sure you provide sufficient information about the problem
instance so that this can be verified. (2 points)

Give an example of how landmarks can be used in the definition of a heuristic function for
state-space planning. Keep the description general as opposed to applying it to a specific
state or problem instance! (1 point)

3 Partial-Order Planning

We now consider partial-order planning using the elevator domain defined in Appendix A. For
simplicity this domain only has a single lift, but there are still opportunities for partial ordering
during the actual planning process! You should use the following problem instance:

(define (problem mixed-f6-p3-u0-v0-g0-a0-n0-A0-BO-NO-FO-r0)

(:domain elevator)

(:objects p0O p1l p2 - passenger

0 f1 £f2 £3 f4 f5 - floor)

(:init .
(above fO f1) (above fO f2) (above f0O £3) (above f0 f4) (above f0O f5)
(above f1 £2) (above f1 £3) (above f1 f4) (above f1 f5)

(above £2 £3) (above f2 f4) (above £2 £5)
(above £3 f4) (above £3 £5)

(above f4 f5)

(origin p0 f0) (destin p0O f4)

(origin pl £3) (destin p1 f£1)

(origin p2 f5) (destin p2 f1)

(lift-at f0)

)
(:goal (and (served p0) (served p1) (served p2)))

)

You should do the following (also make sure you read the notes below):

a) Show the initial partial plan Ty generated for this problem instance by a typical partial-
order planner, such as the PSP planner in the course book (corresponding to what we
discussed during the lectures). This is the partial plan that corresponds to the first node
(“root node”) generated in the search space. Make sure that all relevant aspects of the
actions involved are clearly indicated in the plan. (1 point)

b) Show all the immediate successors of the initial partial plan in the partial-order search
space. That is, demonstrate all the different ways in which a standard PSP-like partially or-
dered planner might modify 7o in a single step. If this should result in several almost iden-
tical partial plans, you may save time by showing a set of representative example partial
plans and explaining (very clearly!) in text which additional successors exist. (2 points)

¢) Show a complete solution plan for this problem instance. Make sure that actions are not
temporally constrained relative to each other unless this is necessary in order to achieve
the goal. (1 point)

Note: For each action in a partially ordered plan, you must clearly show each precondition above
the action and each effect below the action. You must also indicate all other relevant structural
features in the plan: precedence constraints (solid arrows), causal links (dashed arrows) and
threats.

Note: As you see, there are quite a lot of true instances of above (). To reduce space require-
ments, you may illustrate all true instances of above () simply as “above(...)” in the same
place where you would normally have written out all instances explicitly.

4 Planning Graphs

Recall that planning based on planning graphs iterates over two phases: Forward graph expan-
sion, where two new graph layers (each of a distinct type) is added, and backward graph search.

a)

b)

c)

Suppose we do forward graph expansion to level n. What information can we extract
from the resulting planning graph? In other words, how can we interpret the information
present in the different levels of a particular planning graph? You should construct a sim-
ple planning graph to refer to in your explanation. There is no need to make it complete
up to level n ~ simply add sufficient information to illustrate your answer. However, the
information that is there should be correct. (2 points)

Why is backward search in a planning graph more efficient than simply doing standard
backward search in the standard state space? (1 point)

The Fast Forward heuristic is based on the use of planning graphs. Explain how the plan-
ning problem is modified before a planning graph is constructed and give at least one
example of why this speeds up the construction of the graph. Also explain approximately
how the heuristic value is then extracted from the planning graph. (2 points)

A The Elevator Domain

The following is a variation of the standard elevator domain, which contains a set of passengers
that should be transported to their destination floors. For simplicity, we only use a single el-
evator/lift. We assume a typed domain model where each operator parameter and predicate
parameter is given a specific type and cannot take on values outside that type.

Each passenger is represented by a distinct object (p1, p2, p3, ...). Since classical planners
generally do not support numeric values, floors are also represented as distinct objects (f1, 2, f3,
...) together with an above predicate, rather than simply using numbers and “>" (greater than).

Note that there is no predicate directly specifying the current floor of a passenger. Instead, there
are fixed (constant) predicates specifying the origin and destin(ation) of the passenger, together
with two other predicates that are modified by operators: boarded and served. If the passenger
has not boarded and is not served, he/she must be at the origin. If the passenger has boarded
but is not served, he/she is in the lift. If the passenger is not currently boarded and is served,
he/she is at the destination. This is essentially a clever way of encoding control knowledge in
the fundamental structure of the domain without the use of explicit temporal control formulas,
with preconditions ensuring one cannot board or debark an elevator unnecessarily.

(define (domain elevator)
(:requirements :strips)
(:types object
passenger - object ;; Passengers pl, p2,
floor - object) ;3 Floors f1, f2,

(:predicates
(origin 7person - passenger 7floor - floor)
;; initially, 7person is at 7floor
;; (remains true even after the person has moved)

(destin ?7person - passenger ?floor - floor)
;; the destination of 7person is 7floor

(above 7floorl - floor 7floor2 - floor)
;3 ?floor2 is located above 7floori

L

;3 (for example, f4 may be above f3, f2 and f1)

(boarded 7person - passenger)
;3 true if 7person is on board the lift

(served 7person - passenger)
;5 true if 7person has arrived at her destination

(lift-at ?floor - floor)
;; current position of the lift is at 7?floor

)

Actions are shown on the following page.

(raction board
:parameters (7f - floor ?p - passenger)
:precondition (and (lift-at 7f) (origin 7p 7f))
reffect (boarded 7p))

(raction depart
:parameters (7f - floor 7p - passenger)
‘precondition (and (lift-at ?f) (destin 7p 7f) (boarded ?p))
reffect (and (not (boarded 7p)) (served 7p)))

(raction up ;; Moves the lift up
:parameters (7f1 - fleoor 7£f2 - floor)
:precondition (and (lift-at ?f1) (above 7f1 7£2))
reffect (and (lift-at ?f2) (not (lift-at ?£1))))

(raction down ;; Moves the lift down
‘parameters (7f1 - floor 7f2 - floor)
:precondition (and (lift-at ?f1) (above 7f2 7f1))
reffect (and (lift-at ?£2) (not (lift-at 7£1))))
)

