g

“4: Forsittsblad till skriftlig tentamen vid

Linkopings Universitet

Datum for tentamen

2012-08-16

Sal (1)

avses

Om tentan gér i flera salar ska du bifoga ett
forséttsblad till varje sal och ringa in vilken sal som

Tl

Ange vem som besoker salen

Tid 14-18

Kurskod TDDDA48

Provkod TENI1
Kursnamn/benimning Automatisk planering
Provnamn/bendmning Skriftlig tentamen
Institution IDA

Antal uppgifter som ingar i 4

tentamen

Jour/Kursansvarig

Jonas Kvarnstrom,

Telefon under skrivtiden

ankn 2305 eller 0704-
737579

Besoker salen ca kl.

ja

n
(namn + tfnr + mailaddress)

Kursadministrator/kontaktperso

Anna Grabska Eklund,
2362,
anna.grabska.eklund2liu.s
e

anviandas, rutigt eller linjerat

Tillatna hjialpmedel inga
Ovrigt
Vilken typ av papper ska L

Antal exemplar i pasen




Exam: TDDD48 Automated Planning 2012-08-16

Important Notes
Read the following before you begin!
e Though the questions are in English, you may answer in Swedish if you prefer!

o Clear and comprehensible explanations and motivations are always required. This does
not necessarily mean that each answer should be a long essay. What is important is
that all the relevant facts are present and clearly explained.

e Concrete examples or counterexamples may be useful as part of a motivation. If so,
please make sure you include all relevant information about the example.

1 Properties of Classical Plans

The following questions relate to the general structure of classical plans and some general
properties of such plans. We know the following:

e A (sequential) solution plan 7 for a classical problem instance P is redundant iff it
is possible to remove one or more actions from 7 in such a way that the remaining
actions, in their original order, still form a solution that achieves the goal. For ex-
ample, the solution [a;,ay,as, a4, ds,ag) is redundant if [a;,a,,as,ag] or some other
subsequence is also a solution.

e A solution plan 7 for a given problem instance is minimal iff there is no other solution
for P that contains strictly fewer actions.

The standard logistics domain, where a set of packages should be transported to their

destinations, is defined in Appendix A. You should do the following (see also the hint
below):

a) Create a classical planning problem instance for this domain, including a clearly spec-
ified initial state and goal. Show a redundant solution for this problem instance. Show
why the solution is redundant — in other words, indicate which actions can be removed
from the solution. (1 point)

b) Create a classical planning problem instance for this domain, including a clearly spec-
ified initial state and goal. Show a solution for this problem instance that is not
redundant but still not minimal. Explain / motivate clearly why the solution is not
redundant and why it is not minimal. (1 point)

Clarifications and hints:

e Don’t add too many objects or goals — you can generate redundant plans for quite
small problem instances, and using large instances will take you more time than nec-
essary.



2 Search Guidance

Given the size of a typical search space, a planner almost always needs some form of search

guidance as opposed to doing blind search. Often such guidance takes the shape of a heuris-

tic function that evaluates the “quality” of a certain search node, corresponding to one spe-

cific choice that can be made at a particular point in the search space.

a)

b)

c)

Heuristic functions can yield plateaus in the search space. What is a plateau? Visualize
one using part of a search space: Show a set of search nodes, a number of possible
transitions between nodes, and the type of heuristic values that characterize a plateau.
Show which nodes are part of the plateau and explain in words why they form a
plateau. (2 points)

Given an optimization problem, plateaus can in some cases be handled simply by ter-
minating search as soon as a plateau is found. Explain why this approach is generally
not useful in classical planning. Also, explain at least one method that can be used in
planning for dealing with (“escaping™) plateaus. (2 points)

Is the hagqq heuristic, also called hg, admissible? If it is, motivate clearly why. If it is
not, demonstrate using a counterexample: Show a state and goal for which haqq is
not admissible, using the logistics planning domain defined in Appendix A. (1 point)

One possible alternative to a heuristic is the use of temporal control rules.

d)

Write a useful control rule for the logistics domain as specified in Appendix A. The con-
trol rule must be specified formally, using the temporal modal operators always (0O,
eventually (¢), next (o), and until (U) together with the modal goal operator, goal.

Though the control rule does not have to use all of these modal operators, it must use
at least two temporal operators as well as refer to the goal using the goal operator.
(2 points)



3 Partial-Order Planning

We now consider partial-order planning using the elevator domain defined in Appendix B.
For simplicity this domain only has a single lift, but there are still opportunities for partial
ordering during the actual planning process! You should use the following problem instance:
(define (problem mixed-f6-p3-u0-v0-g0-a0-n0-40-BO-NO-FO-r0)
(:domain elevator)
(:objects p0 pl p2 - passenger
f0 f1 £2 £3 f4 £5 - floor)
(:init
(above f0 f1) (above £0 f2) (above f0 £3) (above f0 f4) (above f0 £5)
(above f1 £2) (above f1 £3) (above f1 f4) (above f1 £5)
(above £2 £3) (above f2 f4) (above f£2 £5)
(above £3 f4) (above £3 £5)
(above f4 £5)
(origin p0 £0) (destin p0 £4)
(origin pl £3) (destin pl f1)
(origin p2 £5) (destin p2 f1)
(lift-at £0)
)

(:goal (and (served p0) (served pl) (served p2)))
)

You should do the following (also make sure you read the notes below):

a) Show the initial partial plan mg generated for this problem instance by a typical
partial-order planner, such as the PSP planner in the course book (corresponding
to what we discussed during the lectures). This is the partial plan that corresponds to
the first node (“root node”) generated in the search space. Make sure that all relevant
aspects of the actions involved are clearly indicated in the plan. (1 point)

b) Show all the immediate successors of the initial partial plan in the partial-order search
space. That is, demonstrate all the different ways in which a standard PSP-like par-
tially ordered planner might modify 7, in a single step. If this should result in several
almost identical partial plans, you may save time by showing a set of representative
example partial plans and explaining (very clearly!) in text which additional succes-
sors exist. (2 points)

¢) Show a complete solution plan for this problem instance. Make sure that actions are
not temporally constrained relative to each other unless this is necessary in order to
achieve the goal. (1 point)

Note: For each action in a partially ordered plan, you must clearly show each precondition
above the action and each effect below the action. You must also indicate all other relevant
structural features in the plan: precedence constraints (solid arrows), causal links (dashed
arrows) and threats.

Note: As you see, there are quite a lot of true instances of above (). To reduce space
requirements, you may illustrate all true instances of above () simply as “above(...)” in
the same place where you would normally have written out all instances explicitly.



4 Hierarchical Task Networks

It is now time to define an HTN formulation of the elevator domain for a TFD-like procedure
(Total-order Forward Decomposition) with totally ordered methods.

The “goal” will be represented through an initial task network consisting only of the non-
primitive task transport-everyone(). The intention is for this task to ensure that everyone who
is not yet served will be served (transported to his/her destination).

Your job is to specify one or more methods for the transport-everyone() task, as well as any
other non-primitive tasks and methods that you want to use, to ensure that the task can
eventually be decomposed into primitive tasks. The operators defined in Appendix B should
be used as primitive tasks.

You may assume that each type is associated with a type predicate of the same name. For
example, the type floor is accompanied by a type predicate floor(x).

For this question, you may choose a level of difficulty as follows:

e For 2 points, define an HTN domain where each person is transported separately to
his or her destination, without taking into account the fact that more than one person
may have the same origin or destination. This may result in “inefficient” but still
correct solutions.

e For 4 points, define an HTN domain where you ensure that whenever the elevator
stops at a certain floor to pick up someone, all persons waiting for an elevator at that
floor will board, and whenever it stops in order for someone to depart, all persons
currently on board and having this destination will depart.

Clarifications:

e For every method you create, you must specify which task it corresponds to, which
preconditions it has, and which partially ordered set of parameterized subtasks it is
decomposed into.

e JSHOP2 uses a somewhat different structure for tasks and methods compared to the
book. You may choose to use either the JSHOP2 structure or the book structure, as
long as it is indicated clearly which one you use.

e As always, exact syntax (such as where parentheses are placed) is not irrelevant but is
less important than showing that you have understood the concepts involved. Please
add explanations to clarify what the different parts of your definitions mean, if you
are uncertain whether you follow the correct syntax precisely.



A The Logistics Domain

The standard logistics domain contains a set of packages that should be transported to
their destinations. A package can be transported by truck between any two locations in
the same city, and by airplane between special airport locations in different cities. Since
trucks cannot deliver packages directly to other cities, and airplanes cannot visit arbitrary
locations, delivering a package might require using a truck to move it to an airport, using
an airplane to move it to another city and then once again using a truck to get the package
to its final destination.

We assume the following types of objects:
e thing, with subtypes package and vehicle
e vehicle, with subtypes truck and airplane
e location, with subtype airport
A model of this domain may include the following operators.

e load-truck(package, truck, location) loads a package into a truck, given that they are both
at the same location. The truck can hold an arbitrary number of packages.

e unload-truck(package, truck, location) unloads a package from a truck in the current
location.

e load-plane(package, airplane, location) loads a package into a plane, given that they are
both at the same location. The plane can hold an arbitrary number of packages.

e unload-plane(package, airplane, location) unloads a package from an airplane in the
current location.

e drive-truck(truck, location, location) drives a truck between locations in the same city.
e fly-plane(plane, airport, airport) flies a plane between two airports in different cities.
We assume the following predicates are available:

e at(thing,loc) — the package or vehicle thing is at the location loc. Note that a package
“at” a certain location cannot be “in” a vehicle in the same state.

e in(x,vehicle) — the package x is in the given vehicle.

e same-city(loc1,loc2) — the given locations are in the same city. Note that any location is
in the same city as itself.

We assume a typed domain model where each operator parameter and predicate parameter
is given a specific type and cannot take on values outside that type. For example, if ¢, is a
truck, an expression such as at(t,, t;) is not merely false but syntactically incorrect. Should
you need type predicates at some point, you can assume that thing(x), package(x), vehicle(x),
truck(x), airplane(x), location(x) and airport(x) are inferred automatically by the planner given
the typed values you define in the problem specification.

We can then define the operators more formally as shown on the following page:



load-truck(package pkg, truck trk, location foc)
Precondition: at(pkg, loc) A at(irk, loc)
Effects: —at(pkg, loc), in(pkg, trk)

load-airplane(package pkg, airplane plane, location foc)
Precondition: at(pkg, loc) A at(plane, loc)
Effects: —at(pkg, loc), in(pkg, plane)

unload-truck(package pkg, truck trk, location foc)
Precondition: in(pkg, trk) A at(frk, loc)
Effects: —in(pkg, trk), at(pkg, loc)

unload-airplane(package pkg, airplane plane, location foc)
Precondition: in(pkg, plane) A at(plane, loc)
Effects: —in(pkg, plane), at(pkg, loc)

drive-truck(truck trk, location from, location to)
Precondition: at(trk, from) A same-city(from, to)
Effects: —at(trk, from), at(irk, to)

fly-airplane(airplane plane, airport from, airport to)
Precondition: at(plane, from)
Effects: —at(plane, from), at(plane, to)



B The Elevator Domain

The following is a variation of the standard elevator domain, which contains a set of pas-
sengers that should be transported to their destination floors. For simplicity, we only use a
single elevator/lift. We assume a typed domain model where each operator parameter and
predicate parameter is given a specific type and cannot take on values outside that type.

Each passenger is represented by a distinct object (p1, p2, p3, ...). Since classical planners
generally do not support numeric values, floors are also represented as distinct objects (f1,
f2, 3, ...) together with an above predicate, rather than simply using numbers and “>"
(greater than).

Note that there is no predicate directly specifying the current floor of a passenger. Instead,
there are fixed (constant) predicates specifying the origin and destin(ation) of the passenger,
together with two other predicates that are modified by operators: boarded and served. If the
passenger has not boarded and is not served, he/she must be at the origin. If the passenger
has boarded but is not served, he/she is in the lift. If the passenger is not currently boarded
and is served, he/she is at the destination. This is essentially a clever way of encoding
control knowledge in the fundamental structure of the domain without the use of explicit
temporal control formulas, with preconditions ensuring one cannot board or debark an
elevator unnecessarily.

(define (domzin elevator)
(:requirements :strips)
(:types object
passenger - object ;; Passengers pl, p2,
floor - object) ;3 Floors f1, f2,

(:predicates
(origin 7person - passenger ?floor - floor)
;3 initially, Tperson is at 7floor

;: (remains true even after the person has moved)

(destin ?person - passenger 7floor - floor)

;; the destination of Tperson is 7floor

(2bove 7floorl - floor T?floor2 - floor)
;; 7floor2 is located above 7floori

:; (for example, f4 may be above £3, £2 and £1)

(boarded 7person - passenger)

;; true if Tperson is on board the 1ift

(served 7person - passenger)

;; true if Pperson has arrived at her destination

(lift-at ?floor - floor)
;3 current position of the lift is at 7floor

)

Actions are shown on the following page.



:action board
:parameters (?f - floor 7p - passenger)
:precondition (and (lift-at ?£) (origin 7p 7£))
:effect (boarded 7p))

:action depart

:parameters (7f - floor 7p - passenger)

:precondition (and (lift-at 7£) (destin 7p 7£) (boarded 7p))
.effect (and (not (boarded 7p)) (served p)))

;action up ;; Moves the lift up
:parameters (7fl - floor 7f2 - floor)
:precondition (and (1lift-at ?£1) (above 7f1 ?£2))
.effect (and (lift-at 7£2) (mot (lift-at 7£1))))

.action down ;; Moves the 1lift down

:parameters (7f1 - floor ?f2 - floor)
:precondition (and (lift-at 7£1) (above 7£2 7£1))
.effect (and (lift-at 7£2) (not (lift-at 7£1))))



