*:5 % Information page for written examinations at Linkoping

University
Examination date 2012-01-13
Room (1)
If the exam is given in different
rooms you have to attach an U3

information paper for each room
and mark intended place

Time 8-12

Course code TDDDA48

Exam code TENI

Course name Automatisk planering
Exam name Skriftlig tentamen
Department IDA

Number of questions in the 4

examination

Teacher responsible/contact

. . Jona Kvarnstrom
person during the exam time

Contact number during the exam 0704-737579

time
Visit to the examination room
k1. 09
approx.
Name and contact details to the |Anna Grabska Eklund, ankn.
course administrator 2362,
(name + phone nr + mail) anna.grabska.eklund@liu.se
Equipment permitted inga/none

Other important information

Which type of paper should be
used, cross-ruled or lined

Number of exams in the bag




Exam: TDDD48 Automated Planning 2012-01-10

Please note that you may answer in Swedish if you prefer!
Some pages have clarifications at the end.

1 Classical Planning

Recall that in standard classical planning problems, no function symbols are allowed, goals
constrain only the final state reached by a plan, and preconditions, effects and goals can be
represented as simple sets (conjunctions) of positive and negative literals, without disjunc-
tion, quantification or conditional effects.

Let P; = (0,sq,8;) and P, = (O,sy, g») be two classical planning problems that share the
same operators and initial state. Let 1 = [ay,...,a,] be a solution of length n for P;, and
let 7y = [by,..., b,] be a solution of the same length for P,.

a) Suppose that no operator in O has negative effects. Can we then be certain that the
interleaved action sequence [ay, by, s, by, ..., ay,, b,] is a solution for (O, sy, g1 U g2)?
Motivate clearly why this is or is not the case. (1 point)

b) LetIl = {n | = is applicable to sy} be the set of all action sequences that are executable
starting at sq. Is IT always infinite, sometimes infinite or never infinite? Explain why.
(1 point)

¢) Let S = {y(sp, ) | 7 is applicable to sq} be the set of all states that are reachable
through executable action sequences starting at s,. Is S always infinite, sometimes
infinite or never infinite? Explain why. (1 point)

Note that clear and comprehensible explanations and motivations are required. In some

cases, examples or counterexamples may be useful as part of a motivation.




2 Planning Graphs (6 points)

We will now take a closer look at planning graphs using the standard logistics domain,
where a set of packages should be transported to their destinations. This domain is defined
in Appendix A. We will use a simple problem instance containing the packages {p;, p,}, the
trucks {t;, t;} and the locations {l;, 5}, none of which are airports.

In the initial state, we know that at(p;,[;), at(p,, 1y), at(ty,1,), and at(ty,l;). All locations
are in the same city: {same-city({,I’) | 1,I’ € {l1,15}}. No packages are loaded into vehicles.

The goal is that at(p;,11), at(p, 11), at(t1, 1), and at(ts, 15).

You may assume a typed representation, where “nonsense” propositions such as at(t, t3)
and actions such as drive-truck(p;, p,, p1) cannot occur. Type predicates such as truck(t) are
not used by the operators defined in the appendix and therefore do not have to be present
in the planning graph. You may also omit the same-city predicate from the graph, as it may
otherwise be too complex to keep track of the graph “manually”.

You should do the following:

a) Generate a planning graph for the problem instance defined above, containing a total
of three proposition levels including the initial level. That is, you can stop expanding
the graph after reaching three proposition levels, without having to continue until a
fixpoint is reached.

You must explicitly show all information that is normally part of a planning graph,
including for example mutual exclusion (mutex) relations. This information may be
easier to provide as a table after the actual graph! Make sure to leave sufficient room
for all required arrows. (2 points)

b) Explain when entities in a planning graph are mutually exclusive. Also explain how
mutual exclusion at one level affects which entities are present in the next level of the
graph and how this in turn affects the size of the complete planning graph. Give a
concrete example from the planning graph you created above, showing one specific
way in which the graph would have been different if mutual exclusion had not been
considered. (1 point)

¢) Above, you have shown how a planning graph can be created and expanded. You
should now explain how planners such as GraphPlan actually use this graph during
planning. For example, assuming that a graph with n layers has been created, how
does GraphPlan use this graph to try to find a plan? When does GraphPlan terminate
(give up)? (1 point)

We strongly recommend that you make a quick sketch of the planning graph on a separate
paper before constructing a final version, since it can be difficult to determine in advance
how large the graph will become.




3 Partial-Order Planning

We now consider partial-order planning. We use the standard logistics domain as defined
in Appendix A, with a problem instance containing the packages {p;, po}, the trucks {tq, t5}
and the three locations {l,15, 3}, none of which are airports.

In the initial state, we know that at(py,11), at(py, 1), at(ty,12), and at(ta, Ip). All locations
are in the same city: {same-city(l,I') | LI € {I3,I5,13}}. No packages are loaded into
vehicles.

The goal is that at(py,13), at(py, I3), at(ts, 12), and at(ts, 15).
You should do the following:

a) Show the initial partial plan m, generated for this problem instance by a typical
partial-order planner, such as the PSP planner in the course book. This is the partial
plan that corresponds to the first node (“root node”) generated in the search space.
(1 point)

b) Show all the immediate successors of the initial partial plan. That is, demonstrate
all the different ways in which a standard PSP-like partially ordered planner might

extend 7, in a single step.

For this particular task you do not have to illustrate each successor plan graphically.
Instead, you can explain clearly in writing how each successor would extend 7y, How-
ever, you still need to indicate all changes that would be made, including new con-
straints and relations! (1 point)

¢) Show a partial plan for this problem in which one or more threats appear. Indicate
all threats clearly. (Note that you might be able to extend this plan into a solution
below.) (1 point)

d) Show a complete solution plan for this problem instance, making good use of both
trucks to efficiently resolve all goals. Make sure that actions are not temporally con-
strained relative to each other unless this is necessary in order to achieve the goal.
(1 point)

Note: For each action in a partially ordered plan, you must clearly show each precondition
above the action and each effect below the action. You must also indicate all other relevant
structural features in the plan: precedence constraints (solid arrows), causal links (dashed
arrows) and threats.



4 Planning with Markov Decision Processes

The following example of a stochastic process has been used during the lectures:

move(r1,12,13)
) - 0 wait
witClsae Y s 9,
S 5 move(r1,13,12) 3
= \3 3
e 2
3 N W
E\ /3 =
move(r1,14,11) ‘
,,,,, , wait AN /\ L \&
| C SL o5 54— goe

move(r1,11,14) wait

a) Suppose that our objective is to visit states s2 and s4 repeatedly (over and over again).
For example, we might be generating a policy for a robot that wants to see regularly
what happens at each of those two locations.

Specify costs (for each action) and rewards (for each state) that ensure that this
will happen regardless of which state we start in. Assume a discount factor of 0.9.
(1 point)

b) Begin with an initial policy 7, such that for any state s, mg(s) = wait. Then perform
two full steps of policy iteration given your own costs and rewards, creating the policies
n; and m,. Show clearly how each step in the policy iteration is calculated, not just
the final result. (2 points)

We suggest that you abbreviate the move actions so that move(r1,15,12) becomes m52, etc.



A The Logistics Domain

The standard logistics domain contains a set of packages that should be transported to
their destinations. A package can be transported by truck between any two locations in
the same city, and by airplane between special airport locations in different cities. Since
trucks cannot deliver packages directly to other cities, and airplanes cannot visit arbitrary
locations, delivering a package might require using a truck to move it to an airport, using
an airplane to move it to another city and then once again using a truck to get the package
to its final destination.

We assume the following types of objects:
e thing, with subtypes package and vehicle
e vehicle, with subtypes truck and airplane
o location, with subtype airport

A model of this domain may include the following operators. For Simple Task Network
planning, these operators correspond directly to primitive tasks.

e load-truck(package, truck, location) loads a package into a truck, given that they are both
at the same location. The truck can hold an arbitrary number of packages.

e unload-truck(package, truck, location) unloads a package from a truck in the current
location.

o load-plane(package, airplane, location) loads a package into a plane, given that they are
both at the same location. The plane can hold an arbitrary number of packages.

e unload-plane(package, airplane, location) unloads a package from an airplane in the
current location.

e drive-truck(truck, location, location) drives a truck between locations in the same city.
o fly-plane(plane, airport, airport) flies a plane between two airports in different cities.
We assume the following predicates are available:

e at(thing,loc) — the package or vehicle thing is at the location loc. Note that a package
“at” a certain location cannot be “in” a vehicle in the same state.

e in(x,vehicle) — the package x is in the given vehicle.

e same-city(loc1,loc2) — the given locations are in the same city. Note that a location
must be in the same location as itself.

We assume a typed domain model where each operator parameter and predicate parameter
is given a specific type and cannot take on values outside that type. For example, if t;
is a truck, an expression such as at(ty, t;) is not merely false but incorrect. Nevertheless,
we provide the following type predicates that may be useful in some situations: thing(x),
package(x), vehicle(x), truck(x), airplane(x), location(x) and airport(x).

We can then define the operators more formally as shown on the following page:



load-truck(package pkg, truck trk, location loc)
Precondition: at(pkg, loc) A at(trk, foc)
Effects: —at(pkg, loc), in(pkg, trk)

load-airplane({package pkg, airplane plane, location Joc)
Precondition: at(pkg, loc) A at(plane, loc)
Effects: —at(pkg, loc), in(pkg, plane)

unload-truck(package pkg, truck trk, location loc)
Precondition: in(pkg, trk) A at(trk, loc)
Effects: -in(pkg, trk), at(pkg, loc)

unload-airplane(package pkg, airplane plane, location /oc)
Precondition: in{pkg, plane) A at(plane, loc)
Effects: —in(pkg, plane), at(pkg, loc)

drive-truck(truck trk, location from, location to)
Precondition: at(trk, from) A same-city(from, to)
Effects: —at(trk, from), at(trk, to)

fly-airplane(airplane plane, airport from, airport fo)
Precondition: at(plane, from)
Effects: —at(plane, from), at(plane, to)




