L, Forsittsblad till skriftlig tentamen vid

tentamen

oy Linkopings Universitet
Datum for tentamen 2011-08-18
iSal (1)
O et gt e et som [LERY
avses '
Tid 14-18
Kurskod TDDD48
Provkod TENI
Kursnamn/benimning Automatisk planering
Provnamn/bendmning Skriftlig tentamen
Institution - IDA
Antal uppgifter som ingar i 4

 Jour/Kursansvarig
Ange vem som besdker salen

Jonas Kvarnstrom

|Telefon under skrzvtlden

0704-737579

on
_ (namn + tfnr + mailaddress)

[Besoker salen ca Kl. 15:00
) o Anna Grabska Eklund,
Kursadministrator/kontaktpers |, 1, 2362

anna.grabska.cklund@liu.s |
e

Tillatna hj alpmedel

linga

Ovrlgt

Vilken typ av papper ska
anvindas, rutigt eller linjerat

Antal exemplar i pisen

Exam: Automated Planning 2011-08-18

Please note that you may answet in Swedish if you prefer!
Note that some pages have clarifications at the end!

1 Classical Planning

We know the following:

e A (sequential) solution plan 7 for a classical problem instance P is redundant iff it
js possible to remove one or more actions from 7 in such a way that the remaining
actions, in their original order, still form a solution that achieves the goal. For example,
the solution [a;,ay, @z, a4, as, 6] is redundant if [a;, ap, az, ae] is also a solution.

s A solution plan 7 for a given problem instance is minimal iff there is no other solution
for P that contains strictly fewer actions.

The standard logistics domain, where a set of packages should be transported to their
destinations, is defined in Appendix A. You should do the following:

a) Create a classical planning problem instance for this domain and show a solution 7 for
this problem instance, such that 7 is redundant (and therefore not minimal). Show
why the solution is redundant — in other words, show which actions can be removed
from the solution. {1 point)

b) Create a classical planning problem instance for this domain and show a solution 7
for this problem instance, such that 7 is not redundant but still not minimal. Ex-
plain / motivate clearly why the solution is not redundant and why it is not minimal.
(1 point) '

Let P, = (0,s0,g1) and Py = (0,50, g2) be two classical planning problems that share the
same operators and initial state. Let 7y = [ay,...,8,] be a solution of length n for Py, and
let 7ty == [by,..., b,] be a solution of the same length for P;.

¢} Suppose that the concatenated action sequence 7ty - Tz = [y, ..., dy, b1, ..o b,] hap-
pens to be executable starting at state s, Can we then be certain that it is also a
solution for P, (achieves the goals of P;)? Motivate clearly why this is or is not the
case. If you want to provide an example, you may use the logistics domain or any
other domain. (1 point)

Clarifications and hints:
» Problem instances must specify goals and complete initial states.

e Don't add too many objects or goals ~ you can generate redundant plans for quite
small problem instances, and using large instances will take you more time than nec-
€SSary.

2 Search Guidance in Classical Planning

Given the size of a typical search space, a planner almost always needs some form of search
guidance as opposed to doing blind search. Often such guidance takes the shape of a heuris-
tic function that evaluates the “quality” of a certain search node, corresponding to one spe-
cific choice that can be made at a particular point in the search space.

a)

b)

c)

Heuristic functions can vield plateaus in the search space. What is a plateau? Visualize
one using part of a search space (including search nodes and transitions between
nodes). (1 point)

The technique of delete relaxation is used as one important aspect of many different
heuristic functions. Assume for this question that we only apply pure delete relax-
ation, with no additional relaxations. How does delete relaxation transform a plan-
ning problem / domain? Also, how is the transformed problem used to calculate a
heuristic function given a state for the original problem? (2 points)

Temporal control rules can serve as an alternative or as a complement to heuristics in
forward state space search. Give a conceptual description of temporal control rules.
The following conceptual description of heuristic functions may serve as inspiration:

“Fach node in the search space can be seen as corresponding to a single specific world
state. A heuristic function takes such a state and attempts to estimate the remaining
distance from this state to the nearest goal state. A heuristic search algorithm cun then
use the heuristic function to determine, in one of many different ways, which among
the currently expanded nodes should be explored first. This does not actually reduce
the size of the search space, since even low-priority nodes remain to be searched later if
necessary. However, with a good heuristic, an algorithm can begin by searching those
parts of the search space where solutions are more likely to be found, leaving other parts
to be searched later if the heuristic turned out to be misleading.”

You should not feel constrained to foliow exactly this pattern - indeed, you may need to
write differently in order to properly describe temporal control rules. However, the ex-
ample should serve to illustrate the desired level of detail and abstraction. (2 points)

3 Neo-Classical Planning

Recall that planning techniques that generate classical plans for classical planning domains,
but that use alternative and non-trivial representations of search spaces, are called neo-
classical. Such techniques include SAT planning (planning based on translations into propo-
sitional satisfiability) and GraphPlan (based on planning graphs).

For SAT planning, we have the following questions:

a) SAT-based planning transforms a planning problem into a satisfiability problem. Name
one advantage of doing such a transformation rather than attacking the planning
problem directly. (1 point)

b) In SAT planning, we need frame axioms (for example, explanatory frame axioms) to
ensure that the SAT solver gives correct results that correspond to valid plans. Ex-
plain what property of the world is modeled by the frame axioms (what the frame
axioms “mean”). Also explain with a simple example what could go wrong during
planning if frame axioms were not included in the SAT translation of a planning prob-
lem. €2 points)

For planning with planning graphs, we will continue using the standard logistics domain,
where a set of packages should be transported to their destinations. This domain is defined
in Appendix A. Since large planning graphs tend to be difficult to handle manually, we will
use a very simple problem instance containing the packages {p,p,}, a single truck {t;} and
the locations {l,,1,}, none of which are airports.

In the initial state, we know that at(p;,1;), at(pz, I,), and at(t;,1;). All locations are in the
same city: {same-city({,I)}[,1' e {ll,‘lz}}. No packages are loaded into vehicles.

The goal is that at(py, 1), at(ps, 11), and at(ty,).

~ You may assume a typed representation, where “nonsense” propositions such as at(ty,pa)
and actions such as drive-truck(p;, ps, p1) cannot occur. Type predicates such as truck(t) are
not used by the operators defined in the appendix and therefore do not have to be present
in the planning graph. The same-city predicate never changes and can therefore also be
omitted from the graph.

You should do the following:

¢) Generate a planning graph for the problem instance you defined, containing a total
of three proposition levels. That is, you can stop expanding the graph after reaching
three proposition levels, without having to continue until a fixpoint is reached.

You must explicitly show all information that is normally part of a planning graph,
including for example mutual exclusion (mutex) relations, though some information
may be easier to provide in the shape of text or a table after the actual graph. Make
sure to leave sufficient room for all required arrows! It is probably a good idea to
make a quick sketch on a separate paper before making the final version to be handed
in. (2 points)

4 Hierarchical Task Networks

We continue by defining an HTN (hierarchical task network) formulation of the full logis-
tics domain, where packages may be in different cities and both airplanes and trucks may
have to be used. We assume a TFD-like procedure is used (Total-order Forward Decomposi-
tion), with totally ordered methods. The planner therefore cannot automatically interleave
subtasks originating in different parent tasks.

The six operators defined for this domain in Appendix A can be used as primitive tasks and
do not have to be specified by you. The predicates used in the appendix will also be available
for use in your HTN formulation, as well as this additional predicate:

« dest(package,loc) — true iff the given package should be delivered to the location loc.
This predicate is fixed in the sense that it never changes: It does not become false even
if the package is already at its destination.

A logistics goal is then represented through the initial specification of the dest predicate
together with an initial task network consisting of a single non-primitive task deliver-all(),
corresponding to the task of delivering all packages that are not yet at their destinations.

You should:

¢ Specify one or more methods decomposing the non-primitive task deliver-all() de-
scribed above into subtasks. ‘

¢ For any non-primitive subtasks you invent, specify one or more methods decomposing
those into subtasks as well, so that any decomposition of deliver-all() eventually reaches
the predefined primitive tasks.

For full points (3 points), your solution must satisfy the following:

o A truck must never go back to a location it has previously visited in order to load
another package. (In this case, it would have been better to load the package the first
time it visited that location.)

o If a truck visits a certain location, it must not leave while it is carrying a package
having that location as destination.

¢ Solution plans must not include actions (primitive tasks) that “do nothing”, such as
driving from a location to the same location.

Clarifications and hints:

* For every new method you create, you must specify which task it corresponds to,
which preconditions it has, and which sequence of parameterized subtasks it is de-
composed into,

¢ JSHOP2, which we used for the labs, uses a somewhat different structure for tasks
and methods compared to the book. You may choose to use either of these structures,
as long as it is indicated clearly which one you use.

e As always, exact syntax (such as where parentheses are placed) is less important than
showing that you have understood the concepts involved. Feel free to add explana-
tions to clarify what the different parts of your definitions mean, if you are uncertain
whether you follow the correct syntax precisely.

e Hint: How do you deliver a package if the destination is in the same city? How do
you deliver it to a destination in another city? These are different ways of delivering
the package.

A The Logistics Domain

The standard logistics domain contains a set of packages that should be transported to
their destinations. A package can be transported by truck between any two locations in
the same city, and by airplane between special airport locations in different cities. Since
trucks cannot deliver packages directly to other cities, and airplanes cannot visit arbitrary
locations, delivering a package might require using a truck to move it to an airport, using
an airplane to move it to another city and then once again using a truck to get the package
to its final destination.

We assurne the following types of objects:
 thing, with subtypes package and vehicle
¢ vehicle, with subtypes truck and airplane
& location, with subtype airport

A model of this domain may include the following operators. For Simple Task Network
planning, these operators correspond directly to primitive tasks.

» load-truck(package, truck, location) loads a package into a truck, given that they are both
at the same location. The truck can hold an arbitrary number of packages.

e unload-truck(package, truck, location) unloads a package from a truck in the current
Iocation.

¢ load-plane(package, airplane, location} loads a package into a plane, given that they are
both at the same location. The plane can hold an arbitrary number of packages.

e urload-plane(package, airplane, location) unloads a package from an airplane in the
current location. '

o drive-truck(truck, location, location) drives a truck between locations in the same city.

fly-ptane(plane, airport, airport) flies a plane between two airports in different cities.
We assume the following predicates are available:

e at{thing,loc) — the package or vehicle thing is at the Jocation loc. Note that a package
“at” a certain location cannet be “in” a vehicle in the same state. -

e in(xvehicle) — the package x is in the given vehicle.

e same-city(loc loc2) — the given locations are in the same city. Note that a location
must be in the same location as itself. :

We assume a typed domain model where each operator parameter and predicate parameter
is given a specific type and cannot take on values outside that type. For example, if t4
is a truck, an expression such as at{t;, ;) is not merely false but incorrect. Nevertheless,
we provide the following type predicates that may be useful in some situations: thing(x),
package(x), vehicle(x), truck(x), airplane(x), location(x) and airport(x).

We can then define the operators more formally as shown on the following page:

[]

L

load-truck(package pkg, truck trk, location loc)
Precondition: at(pkg, loc) A at(lrk, loc)
Etfects: —at{pkg, loc), in{pkg, trk)

load-airplane({package pkg, airplane plane, location foc)
Precondition: at{pkg, loc) A at{plane, loc)
Effects: mat(pkg, foc), in(pky, plane)

untoad-truck{package pkg, truck trk, location loc)
Precondition: in{pkg, trk) A at(irk, loc)
Effects: —in{pkg, trk), at(pkg, loc)

unload-airplane(package pky, airplane plans, location loc)
Precondition: in{pkg, pfane) A at(plane, loc)
Effects: —in{pkg, plane), at(pkg, loc)

drive-truck(truck trk, location from, location to)
Precondition: at{trk, from) A same-city(from, fo)
Effects: —at{irk, from), at(trk, fo)

fiy-airblane(airplane plane, akrport from, airport {o)
Precondition: at(plane, from)
Effects: —at(plane, from), at{plane, (o)

