,!,..L Information page for written
" examinations at Linkoping University

examination

Examination date 2011-06-01
Room (1)

If the exam is given in different rooms you {714

have to attach an information paper for

each room and mark intended place

Time 8-12

Course code TDDDA48

Exam code TENI

Course name Automatisk planering
Exam name Skriftlig tentamen
Department IDA

Number of questions in the 5

Teacher
responsible/contact person
during the exam time

Jonas Kvarnstrom

Contact number during
the exam time

0704-737579

Visit to the examination
Yoom approx.

109.00

Name and contact details

to the course administrator
(name + phone nr + mail)

Anna Grabska Eklund, 2362,
anna.grabska.eklund@liu.se

in_ga

should be used, cross-ruled

Equipment permitted

Other important

information

Which type of paper valfritt




Exam: Automated Planning 2011-06-01

Please note that you may answer in Swedish if you prefer!

1 Heuristics in Classical State Space Planning

Many classical planners build on forward-chaining search together with heuristics guiding
search towards promising areas of the state space. Often these heuristics build on the use of
delete relaxation, where delete effects (negative effects) are ignored, resulting in a simpler
problem that can be solved in order to estimate the difficulty of the true planning problem.

a)

b)

We have discussed the h,, family (m = 1) of domain-independent admissible heuris-
tics. These heuristics build on delete relaxation, but add further simplifications.

Explain the meaning of h,,(s), where s is a state. That is, what property of the state
and the planning problem does h,,(s) calculate for different values of m? You do not
have to specify this as a formula / equation, but should provide a clear explanation.
{2 points)

The hy (h-zero) heuristic has one fundamental difference from the standard h,, fam-
ily of heuristics. What is the difference? In what way does this affect the heuristic
(positively and/or negatively) in terms of strength as well as applicability? (2 points)

2 Neo-Classical Planning

Recall that planning techniques that generate clagsical plans for classical planning domains,
but that use alternative and non-trivial representations of search spaces, are called neo-
classical. Such techniques include SAT planning (planning based on translations into propo-
sitional satisfiability) and GraphPlan (based on planning graphs).

a)

b)

c)

d)

€)

In SAT planning, we may use complete exclusion axioms. What is the purpose of such
axioms and when would we want to avoid using them? (1 point)

In SAT planning, we need frame axioms (for example, explanatory frame axioms) to
ensure that the SAT solver gives correct results that correspond to valid plans. Ex-
plain what could go wrong, and how, if frame axioms were not included in the SAT
translation of a planning problem. (1 point)

GraphPlan: Planning based on planning graphs iterates over two phases: Forward
graph expansion, where a new graph level is added, and backward graph search.

Doing forward graph expansion to level n is more efficient than completely exploring
the state space to a search depth of n using plain forward-chaining search with a
depth limit. Why is this the case, and why can forward graph expansion “get away
with” doing less work than plain forward search? (2 points)

GraphPlan: Why is backward search in a planning graph more efficient than simply
doing standard backward search in the standard state space? (1 point)

GraphPlan: Each level in a planning graph (except level zero) contains two different
layers. Explain for each layer which kind of “entities” it contains and when these
entities are considered mutually exclusive. (1 point)



3 Partial-Order Planning

We now consider partial-order planning using the elevator domain defined in Appendix A.
For simplicity, this domain only has a single lift. However, there are still opportunities for
partial ordering! You should use the following problem instance:

(define {problem mixed-f6-p3-u0-v0-g0-al-n0-A0-BO-NO-FO-x0)
(:domain miconic)
(iobjects p0 pl p2 - passenger
£0 f1 £2 £3 £4 £8 - floor)

(:init
(above £O £1) (above 0 £2) (above f0 £3) (above f0 f4) (above £0 £5)
(above f1 £2) (above f£1 £3) (above f1 f4) {(above f1 f5)
(above ¥2 £3) {(above f2 f4) (above £2 £5)
(above £3 f4) {(above £3 £5)
(above f4 £5)

(origin p0 £3) (destin p0 £4)
(origin pl £3) (destin pl £1)
(origin p2 £5) (destin p2 £1)

(lift-at £0)

)
(:goal

(and (served p0) (served pl) (served p2))
)

)
You should do the following (also make sure you read the notes below):

a) Show the initial partial plan m, generated for this problem instance by a typical
partial-order planner, such as the PSP planner in the course book (corresponding
to what we discussed during the lectures). This is the partial plan that corresponds to
the first node (“root node”) generated in the search space. Make sure that all relevant
aspects of the actions involved are clearly indicated in the plan. (1 point)

b) Show all the immediate successors of the initial partial plan in the partial-order search
space. That is, demonstrate all the different ways in which a standard PSP-like par-
tially ordered planner might modify 7y in a single step.

For this particular task you do not have to illustrate each successor plan graphically, .
in case this would lead to excessive work, Instead, you can explain clearly in writing
how each successor would extend 71y, However, you still need to indicate all changes
that would be made for each successor, including new constraints, relations and links!
{2 points)

¢} Show a complete solution plan for this problem instance. Make sure that actions are
not temporally constrained relative to each other unless this is necessary in order to
achieve the goal. (1 point)

Note: For each action in a partially ordered plan, you must clearly show each precondition
above the action and each effect below the action. You must also indicate all other relevant
structural features in the plan: precedence constraints (solid arrows), causal links (dashed
arrows) and threats,

Note: As you see, there are quite a lot of true instances of above(). To reduce space
requirements, you may illustrate all true instances of above () simply as “above(...)" in
the same place where you would normally have written out all instances explicitly.



4 Hierarchical Task Networks

It is now time to define an HTN formulation of the elevator domain for a PFD-like plan-
ner (Partial-order Forward Decomposition): Subtasks can be partially ordered in a method
specification, and plans can interleave subtasks originating in different parent tasks (you do
parts of one task, then parts of another, then continue with the first task).

We represent the “goal” through an initial task network consisting of one or more unordered
non-primitive tasks of the form transport(x, from, to), where x is a person who should be
transported from floor from to floor fo.

You should specify the required set of non-primitive tasks and methods for this domain,
using the operators defined in Appendix A as primitive tasks. That is, you should specify
non-primitive tasks and methods that decompose the initial set of tasks into subtasks ensur-
ing that the objective is achieved, in such a way that you eventually reach the predefined
primitive tasks. You may assume that each type is associated with a type predicate of the
same name. For exampie, the type person is accompanied by a type predicate person(x).

For this question, you may choose a level of difficulty as follows:

e For 1 point, define an HTN domain where each person is transported “separately” to
his or her destination, without taking into account the fact that more than one person
may have the same origin or destination.

e For 3 points, define an HTN domain where you ensure that whenever the elevator
stops at a certain floor to pick up someone, all persons waiting at that floor may
depart, and whenever it stops in order for someone to depart, all persons currently on
board with this destination may depart.

Note that you cannot do this simply by iterating or recursing over all persons at the
current floor or all persons in the elevator, since this does not work well with the initial
task network containing a number of separate “transport” tasks. Instead, it must be
done by allowing the planner to interleave tasks where necessary.

Note that for the purposes of this exam, it is sufficient to leave the HTN planner
enough freedom so that it can choose to generate interleaved plans. You do not have
to force the planner to interleave the plans in the best way.

¢ For 5 points, define an HTN domain as for 3 points, but also ensure that the elevator
can never skip a floor where there are people to pick up or “deliver” (assuming the
elevator is of infinite capacity). The elevator must also never stop at a floor where
there is no one to pick up or deliver, so simply stopping at all floors is not a solution.

Clarifications:

» For every method you create, you must specify which task it corresponds to, which
preconditions it has, and which partially ordered set of parameterized subtasks it is
decomposed into.

s JSHOP2 uses a somewhat different structure for tasks and methods compared to the
book. You may choose to use either of these structures, as long as it is indicated clearly
which one you use.

s Note that if there is an initial task transport{x, from, to) where x is not initially at from,
planning must naturally faill

e As always, exact syntax (such as where parentheses are placed) is less important than
showing that you have understood the concepts involved. Feel free to add explana-
tions to clarify what the different parts of your definitions mean, if you are uncertain
whether you follow the correct syntax precisely.



5 Planning with Markov Decision Processes

The following example of a stochastic process has been used during the lectures:

mo\le\“\ 5 '\1}_ —

move(r1,i2 l3)

= move(r‘l,i3,l2)
:
5
= move(r1,14,11) \.
wait 1 ,‘ 4—//—_\

move(r1,11,14) wait

Assume that the cost of each move action is 100, while the cost of waiting is unspecified.

Rewards for visiting states are also unspecified. Assume a discount factor of 0.9.

a) Suppose that our objective is to visit states s2 and s4 repeatedly (over and over again).
For example, we might want to see regularly what happens at each of those two

locations.

Specify costs (for each wait action) and rewards (for all states) that ensure that this

will happen, regardless of which state we start in. (1 point)

b) Begin with an initial policy 7y such that for any state s, 7g(s) == wait. Then perform
two full steps of policy iteration given your own costs and rewards, creating the policies

1, and 7. {2 points)



A The Elevator Domain

The elevator domain contains a set of passengers that should be transported to their desti-
nation floors. For simplicity, we use a single lift in this simplified domain formulation. We
assume a typed domain model where each operator parameter and predicate parameter is
given a specific type and cannot take on values outside that type.

(define (domain miconic)
(:requirements :strips)
(:types object

passenger - object
floor - object)

(:predicates
(origin ?person - passenger 7floor - floor)
3; entry of 7person is 7floor

{destin 7Tperson - passenger 7floor - floor)
;3 destination of 7person is 7floor

(above 7floorl - floor ?floor2 - floor)
;3 Tflooxr? is located above Tfloord

(boarded ?person - passenger)
;: true if Tperson has boarded the lift

(served Tperson - passenger)
;; true 1f Tperson has arrived at her destination

(lift~at ?flcor - floor)
33 current position of the lift is at 7floor

(raction board
iparameters (?f - floor Tp - passenger)
iprecondition (and (Lift-at 7f) (origin 7p 7£))
teffect (boarded 7p))

{iaction depart
iparameters (7f - floor Tp - passenger)
iprecondition (and (lift-at 7£) {(destin 7p 7£) (bearded 7p))
ieffect (and {(not (boarded 7p)) (served 7p)))

(raction up ;; Moves the lift up
rparameters (7£1 - floor 7T£2 - fleor)
iprecondition (and (lift-at ?£1) (above 7f1 7£2))
reffect (and (lift-at 7£2) (not (lift-at 7£1))))

(:mction down ;; Moves the 1lift down
iparameters (7f1l - floor 7£2 - floor)
:precondition (and (iift-at 7f1) (above 7T£2 ?£1))
:effect (and {(lift-at 7£2) (not {(lift-at ?f1))))
)



