5‘5@

Umversxtet

Forsittsblad till skriftlig tentamen vid Linkopings

;Datum for tentamen -

[Sal (1)

ibifoga ett forsittsblad till varje sal

Om tentan gér i flera salar ska du ITER?

och ringa in vilken sal som avses

porioios

Tid 12

Kurskod TDDD48

Provkd ~~ TENY
Kursnamn/benimning éAutomatlsk planering
Provnamn/beniimning ~ [Skriftlig tentamen

In stltutlon

DA

tentamen

Antal uppglfter som mgar i 4 _

Jour/Kursansvarig

- Jonas Kvarnstrém
Ange vem som besSkersalen [

[Telefon under skrivtiden

0704737579

Kursadministrator/kontaktpers
on . |
|(namn -+ tinr + mailaddress)

Besoker salencakl. ~ |ca 09.00
| iAnna Grabska Eklund

lankn. 2362,
lanna.grabska.eklund@liu.s
le

;Tlllatna h] alpmedel |

linga

jOVI‘lgt o

-|Vilken typ av papper ska
- |lanvéndas, rutigt eller lm]erat

.‘Antal exemplar i pasen

Exam: Automated Planning 2011-01-08

Please note that you may answer in Swedish.

1 Classical Plans (4 points)

Recall that in standard classical planning problems, no function symbols are allowed, goals
constrain only the final state reached by a plan, and preconditions, effects and goals con-
sist of simple sets of positive and negative literals, without disjunction, quantification or
conditional effects.

Let P, = (0O,s5,8,) and P, = (0,3, &2) be two classical planning problems that share the
same operators and initial state. Let 7; = [a3,...,a,] be a solution of length n for Py, and
let 7ty = [by,..., b,] be a solution of the same length for Py.

a) Suppose that the concatenated action sequence 7y » Ty = [@1,...,ay, b1,.-., by hap-
pens to be executable starting at state sp. Can we then be certain that it is also a
solution for P,? Motivate clearly why this is or is not the case. (1 point)

b) Suppose that no operator in O has negative effects. Can we then be certain that the
interleaved action sequence [a;, by, @z, ba, - .- .Gy, by is a solution for (0,54, g1 U g2)?
Motivate clearly why this is or is not the case. (1 point)

¢) LetIl = {m | m is applicable to 5o} be the set of all action sequences that are executable.
starting at sg. Is II always infinite, sometimes infinite or never infinite? Explain why.
(1 point)

d) Let S = {y(so,®) | 7 is applicable to sy} be the set of all states that are reachable .
through executable action sequences starting at s,. Is $ always infinite, sometimes
infinite or never infinite? Explain why. (1 point)

Note that clear and comprehensible explanations and motivations are required.

2 Planning Graphs (6 points)

We will now take a closer look at planning graphs using the standard logistics domain,
where a set of packages should be transported to their destinations. This domain is defined
in Appendix A. We will use a simple problem instance containing the packages {p;, p}, the
trucks {t1,t,} and the locations {lI;,1,}, none of which are airports.

In the initial state, we know that ai(p;, 1), at(ps, lp), at(ty,), and at(ty, [5). All locations
are in the same city: {same-city({,1") | 1,1’ € {l;,1,}}. No packages are loaded into vehicles.

The goal is that at(py,1,), at(ps, [1), at(ty, Ip), and at(ts,).

You may assume a typed representation, where “nonsense” propositions such as at(t;, £5)
and actions such as drive-truck(py, py, p1) cannot occur. Type predicates such as truck(t) are
not used by the operators defined in the appendix and therefore do not have to be present
in the planning graph. You may also omit the same-city predicate from the graph, as it may
otherwise be too complex to keep track of the graph “manually”.

You should do the following:

a) Generate a planning graph for the problem instance defined above, containing a total
of three proposition levels. That is, you can stop expanding the graph after reaching
three proposition levels, without having to continue until a fixpoint is reached.

You must explicitly show all information that is normally part of a planning graph,
including for example mutual exclusion (mutex) relations, though some information
may be easier to provide in the shape of text or a table after the actual graph. Make
sure to leave sufficient room for all required arrows! (3 points)

b) Explain when entities in a planning graph are mutually exclusive. Also explain how
mutual exclusion at one level affects which entities are present in the next level of the
graph and how this in turn affects the size of the complete planning graph. Give a
concrete example from the planning graph you created above, showing one specific
way in which the graph would have been different if mutual exclusion had not been
considered. (1 point)

¢) Above, you have shown how a planning graph can be created and expanded. You
should now explain how planners such as GraphPlan actually use this graph during
planning. For example, assuming that a graph with n layers has been created, how
does GraphPlan use this graph to try to find a plan? When does GraphPlan terminate
(give up)? (2 points)

3 Partial-Order Planning (6 points)

We now consider partial-order planning. We once again use the standard logistics domain
as defined in Appendix A, but now use a problem instance containing the packages {p;,pa},
the trucks {t;, £} and the locations {l;,1;, I3}, none of which are airports.

In the initial state, we know that at(ps, 1), at(p,l»), at(t;,1p), and at(ty,1;). All locations
are in the same city: {same-city(1,l") | ,I’ € {l;,15,15}}. No packages are loaded into
vehicles.

The goal is that ai(Pl, 13); at(pz, 13), at{tl, 12), and at(tz, 12).
You should do the following:

a) Show the initial partial plan 7, generated for this problem instance by a typical
partial-order planner, such as the PSP planner in the course book. This is the partial
plan that corresponds to the first node (“root node”) generated in the search space.
{1 point)

b) Show all the immediate successors of the initial partial plan. That is, demonstrate
all the different ways in which a standard PSP-like partially ordered planner might
extend 7, in a single step.

For this particular task you do not have to illustrate each successor plan graphically.
Instead, you can explain clearly in writing how each successor would extend my. How-
ever, you still need to indicate all changes that would be made, including new con-
straints and relations! (2 points)

¢} Show a partial plan for this problem in which one or more threats appear. Indicate
all threats clearly. (Note that you might be able to extend this plan into a solution
below.) (2 points)

d) Show a complete solution plan for this problem instance, making good use of both
trucks to efficiently resolve all goals. Make sure that actions are not temporally con-
strained relative to each other unless this is necessary in order to achieve the goal.
(1 point)

Note: For each action in a partially ordered plan, you must clearly show each precondition
above the action and each effect below the action. You must also indicate all other relevant
structural features in the plan: precedence constraints (solid arrows), causal links (dashed
arrows) and threats,

4 Hierarchical Task Networks (4p)

We now define an HTN formulation of the logistics domain for a PFD-like planner (Partial-
order Forward Decomposition): Subtasks can be partially ordered in a method specification,
and plans can interleave subtasks originating in different parent tasks (you do parts of one
task, then parts of another, then continue with the first task).

We represent a logistics goal through an initial task network consisting of one or more non-
primitive tasks of the form deliver(x, from, to}, where x is a package which is initially at from
and should be delivered at to. For example, there may be three initial unordered tasks:
{deliver(package1,loc1,loc2), deliver(package?,loct loc3), deliver(package3,loc3,locs)}.

You should specify the required set of non-primitive tasks and methods for the logistics
domain, using the six operators defined in Appendix A as primitive tasks. In other words,
you should specify non-primitive tasks and methods that decompose an initial set of tasks
on the form dsliver(x, from, to) into subtasks ensuring that package x is eventually delivered
at to, in such a way that you eventually reach the predefined primitive tasks. Note that if x
is not initially at from, the package cannot be delivered from that location and the method
you defined must naturally fail!

Your methods must be general in the sense that they can be applied to arbitrary problem
instances. Solution plans must not include actions (primitive tasks) that “do nothing”, such
as driving from a location to the same location.

For 2 points, it is sufficient to specify methods that are always guaranteed to generate
a valid solution, even if for some problem instances, these methods can never generate
optimal solutions.

For 4 points, you must also make sure your methods can result in plans that are optimal in
terms of the number of actions used.

This merits some further discussion. HTN planners can often make choices, random or
informed, as to which method should be used in order to accomplish a specific task. For
example, it may choose to deliver five packages using a single truck, or split the packages
in various ways between two different trucks. Sometimes one alternative will be better,
sometimes the other. We can of course try to find preconditions that “force” the planner to
choose optimal plans, but such preconditions will be very complex and likely require a great
deal of time to compute, Therefore, we only require that you leave sufficient freedom to
ensure that the optimal plan can be found if the PFD procedure just happens to make the
best possible non-deterministic choices. For example, for 4 points your methods must allow
an arbitrary number of packages to be moved by a truck at the same time by interleaving
subtasks. After finding the first plan, the planner can then continue to search for better
plans, eventually converging towards optimality.

Clarifications:

e For every new method you create, you must specify which task it corresponds to,
which preconditions it has, and which partially ordered set of parameterized subtasks
it is decomposed into.

¢ JSHOP2 uses a somewhat different structure for tasks and methods compared to the
book. You may choose to use either of these structures, as long as it is indicated clearly
which one you use.

o As always, exact syntax (such as where parentheses are placed) is less important than
showing that you have understood the concepts involved. Feel free to add explana-
tions to clarify what the different parts of your definitions mean, if you are uncertain
whether you follow the correct syntax precisely.

A The Logistics Domain

The standard logistics domain contains a set of packages that should be transported to
their destinations. A package can be transported by truck between any two locations in
the same city, and by airplane between special airport locations in different cities. Since
trucks cannot deliver packages directly to other cities, and airplanes cannot visit arbitrary
locations, delivering a package might require using a truck to move it to an airpott, using
an airplane to move it to another city and then once again using a truck to get the package
to its final destination.

We assume the following types of objects:
 thing, with subtypes package and vehicle
» vehicle, with subtypes truck and airplane
® location, with subtype airport

A model of this domain may include the following operators. ¥or Simple Task Network
planning, these operators correspond directly to primitive tasks.

s load-truck(package, truck, location) loads a package into a truck, given that they are both
at the same location. The truck can hold an arbitrary number of packages.

» unload-truck(package, truck, location) unloads a package from a truck in the current
location.

» load-plane(package, airplane, location) loads a package into a plane, given that they are
both at the same location. The plane can hold an arbitrary number of packages.

* unload-plane{package, airplane, location) unloads a package from an airplane in the
current location. :

o drive-truck(truck, location, location) drives a truck between locations in the same city.
« fly-plane(plane, airport, airport) flies a plane between two airports in different cities.
We assume the following predicates are available:

e at(thing,loc) — the package or vehicle thing is at the location loc. Note that a package
“at” a certain location cannot be “in” a vehicle in the same state.

e in{x,vehicle) — the package x is in the given vehicle.

¢ same-city(loc1,loc2) — the given locations are in the same city. Note that a location
must be in the same location as itself.

We assume a typed domain model where each operator parameter and predicate parameter
is given a specific type and cannot take on values outside that type. For example, if &;
is a truck, an expression such as at(ty, t1) is not merely false but incorrect. Nevertheless,
we provide the following type predicates that may be useful in some situations: thing(x},
package(x), vehicle(x), truck(x), airplane(x), location{x) and airport(x).

We can then define the operators more formally as shown on the following page:

L]

load-truck{package pkg, truck frk, location loc)
Precondition: at(pkg, foc} A at(irk, foc)
Effects: mat{pkg, foc), In(pkg, trk)

load-airplane(package pkg, airplane plane, location foc)
Precondition: at(pkg, loc) A at{plane, foc)
Effects: —at(pky, loc), in(pkg, plane)

unload-iruck{package pkg, truck Irk, location loc}
Precondition: in{pkg, irk) A at(trk, loc)
Effects: —in{pkg, trk), at(pkg, loc)

unload-airplane(package pkg, airplane plane, location loc)
Precondition: in{pkg, pfane) A at{plane, loc)
Effects: —in(pkg, plane), at(pkg, loc)

drive-ruck(truck frk, location from, location o)
Precondition: at(trk, from) A same-city(from, 10)
Effects: —at{trk, from), at(trk, to)

fly-airplane{airplane plane, airport from, airport to)
Precondition: at(plane, from)
Effects: —at{plane, from), at{plane, to)

