Forsattsblad till skriftlig
tentamen vid Linkdpings Universitet

(fylls i av ansvarig)

Datum for tentamen 2010-08-16

Sal U3

Tid 8-12

Kurskod IDDD48
Provkod | TENI
Kursnamn/benimning Automatisk planering
Institution IDA

Antal uppgifter som 4

ingar i tentamen

Antal sidor pa tentamen 7

(inkl. forsittsbladet)

Jour/Kursansvarig Jonas Kvarnstrom
Telefon under skrivtid 0704-737579
Besoker salen ca Kkl. K1.09:00
Kursadministrator Anna Grabska Eklund
(namn + tfanr + mailadress) Ankn. 23 62, annek@ida.liu.se
Tillatna hjilpmedel inga

Ovrigt

(exempel nir resultat kan ses

pa webben, betygsgrinser,

visning, dvriga salar tentan gar

i m.m.)

Vilken typ av papper ska valfritt

anvindas, rutigt eller linjerat

Antal exemplar i pasen

Exam: Automated Planning 2010-08-16

Please note that you may answer in Swedish.

1 Classical Plans (4 points)

Recall that in standard classical plarning problems, no function symbols are allowed,
goals constrain only the final state reached by a plan, and preconditions and effects
consist of simple sets of positive and negative literals, without support for disjunction,
quantification or conditional effects.

Let Py = (O, s0,9:) and Py = (O, 50, g2) be two classical planning problems that share
the same operators and initial state. Let m = [a1,...,ax) be a solution of length n
for Py, and let wo = {b1, ..., by] be a solution of the same length for F.

8)

b)

d)

Suppose that the concatenated action sequence my - my = {a1,...,Gn,01,...,by]
happens to be executable starting at state sp. Can we then be certain that it is
also a solution for Po? Motivase clearly why this is or is not the case. (1 point)

Suppose that no operator in O has negative effects. Can we then be certain that the
interleaved action sequence [a1,b1, 02, b2, . . -, Gn, by} is & solution for (O, sq, g1Uga)?
Motivate clearly why this is or is not the case. (1 point)

Let IT = {= | 7 is applicable to so} be the set of all action sequences that are
executable starting at so. Is Il always finite, sometimes finite or never finite?
Explain why. (1 point)

Let S = {7(sp,m) | 7 is applicable to so} be the set of all states that are reachable
through executable action sequences starting at sp. Is S alwoys finite, sometimes
finite or never finite? Explain why. (1 point)

Note that points are given mainly for clear and understandable explanations and moti-
vations.

2 Planning Graphs (6 points)

We will now take a closer look at planning graphs using the standard logistics do-
main, where a set of packages should be transported to their destinations. This domain
is defined in Appendix A. We will use a simple problem instance containing the packages
{p1,p2}, the trucks {t;,fo} and the locations {l3,l2}, none of which are airports.

In the initial state, we know that at{py, 1), at(ps, l2), at{t1, 1), and at(fs,lz). All loca-
tions are in the same city: {same-city({,I") { {,I' € {{,12}}. No packages are loaded into
vehicles. :

The goal is that at(p1, 1), at{pe, 11), at{ty, 1), and at(ty, l2).

You may assume a typed representation, where “nonsense” propositions such as at(ty,t2)
and actions such as drive-truck(py, pz, p1) cannot occur. Type predicates such as truck(t)
are not used by the operators defined in the appendix and therefore do not have to be
present in the planning graph. The same-city predicate never changes and can therefore
also be omitted from the graph.

You should do the following:

a) Generate a planning graph for the problem instance defined above, containing a
total of three proposition levels. That is, you can stop expanding the graph after
reaching three proposition levels, without having to continue until a fixpoint is
reached.

You must explicitly show all information that is normally part of a planning graph,
including for example mutual exclusion (mutex) relations, though some information
may be easier to provide in the shape of text or a table after the actual graph.
Make sure to leave sufficient room for all required arrows! (3 points)

b) Explain when entities in a planning graph are mutually exclusive. Also explain
how mutual exclusion at one level affects the next level of the graph and how this
in turn affects the size of the complete planning graph. Give a concrete example
from the planning graph you created above, showing one way in which the graph
would have been different if mutual exclusion had not been considered. (1 point)

¢) Explain how planners such as GraphPlan benefit from the use of a planning graph
to improve performance compared to more straight-forward methods such as plain
forward- or backward-chaining. How is the planning graph used during search
and how does it help the planner find & plan more efficiently? Note that we are
not referring to the fact that planning graphs can be used “indirectly” to define
heuristic functions for standard heuristic forward-chaining search! (2 points)

3 Partial-Order Planning (6 points)

A similar but slightly different problem instance will now be considered in the context
of partial-order planning. We once again use the standard logistics domain as defined
in Appendix A, but now use a problem instance containing the packages {p1,p2}, the
trucks {t1,t2} and the locations {l1,l2,ls}, none of which are airports.

In the initial state, we know that at(p1,l1), at(ps,la), at(ty,ls), and at(tz,lp). All loca-
tions are in the same city: {same-city({,l') | [,I’ € {l1,12,{a}}. No packages are loaded
into vehicles.

The goal is that Bt(pl,lg), at(pg,lg), at(tl, Eg), and a!‘.(ﬁz, lg}
You should do the following:

a) Show the initial partial plan mo generated for this problem instance by a typi-
cal partial-order planner, such as the PSP planner in the course book. This is
the partial plan that corresponds to the first node generated in the search space.
(1 point)

b) Show all the immediate successors of the initial partial plan. That is, demonstrate
all the different ways in which a standard PSP-like partially ordered planner might
extend 7y in a single step.

For this particular task you do not have to llustrate each successor plan graphically.
Instead, you can explain clearly in writing how each successor would extend mp.
However, you still need $o indicate all changes that would be made, including new
constraints and relations! (2 points)

¢) Show a partial plan for this problem in which one or more threats appear. Indicate
all threats clearly. (Note that you might be able to extend this plan into a solution
below.) (2 points)

d) Show a complete solution plan for this problem instance, making good use of both
trucks to efficiently resolve all goals. Make sure that actions are not temporally
constrained relative to each other unless this is necessary in order to achieve the
goal. {1 point)

Note: For each action in a partially ordered plan, you must clearly show each precondi-
tion above the action and each effect below the action. You must also indicate all other
relevant structural features in the plan: precedence comstraints (solid arrows), causal
links (dashed arrows) and threats.

4 Hierarchical Task Networks (4p)

We continue by defining an HTN (hierarchical task network) formulation of the logis-
tics domain under the assumption that a PFD-like procedure is used (Partial-order
Forward Decornposition): Methods are partially ordered and subtasks originating in dif-
ferent parent tasks can be interleaved (you do parts of one task, then parts of another,
then continue with the first task).

A logistics goal is then represented through an initial task network consisting of one or
more non-primitive tasks of the form deliver(x, from, to), where x is a package which is ini-
tially at from and should be delivered at to. For example, there may be nodes for the tasks
{deliver(packagel,locl loc2), deliver(package2,loct Joc3), deliver(package3,loc3,locb)}.

You should:

e Specify the required set of non-primitive tasks and methods for the logistics do-
main, using the six operators defined in Appendix A as primitive tasks. In other
words, you should specify non-primitive tasks and methods that decompose an ini-
tial set of tasks on the form deliver{x, from, to) into subtasks ensuring that package
x is eventusally delivered at to, in such a way that you eventually reach the prede-
fined primitive tasks. Note that if x is not initially at from, the package cannot be
delivered from that location and the method you defined roust naturally faill

Your methods must be general in the sense that they can be applied to arbitrary
problem instances. Solution plans must not include actions (primitive tasks) that
“do nothing”, such as driving from & location to the same location.

For 2 points, you are allowed to create inefficient solution plans in the specific
sense that trucks and airplanes only move a single package at a time.

For 4 points, you must make sure your methods can result in plans that are
optimal in terms of the number of actions used.

This merits some further discussion. HTN planners can often make choices, random
or informed, as to which method should be used in order to accomplish a specific
task. For example, it may choose to deliver five packages using the same truck, or
split them in various ways between two different trucks. Determining in advance
which variation leads to an optimal plan can be very difficult. Therefore, we only
require that you leave sufficient freedom so that the optimal plan can be found
if the PED procedure just happens to make the best possible non-deterministic
choices. For example, for 4 points your methods must allow an arbitrary number
of packages to be moved by a truck at the same time by interleaving subtasks.

Clarifications:

» For every new method you create, you must specify which task it corresponds
to, which preconditions it has, and which partially ordered set of parameterized
stbtagks it is decomposed into.

o JSHOP2 uses a somewhat different structure for tasks and methods compared to
the book. You may choose to use either of these structures, as long as it is indicated
clearly which one you use.

o As always, exact syntax (such as where parentheses are placed) is less important
than showing that you have understood the concepts involved. TFeel free to add
explanations to clarify what the different parts of your definitions mean, if you are
uncertain whether you follow the correct syntax precisely.

A The Logistics Domain

The standard logistics domain contains a set of packages that should be transported
to their destinations. A package can be transported by truck between any two locations
in the same city, and by airplane between special aérport locations in different cities.
Since trucks cannot deliver packages directly to other cities, and airplanes cannot visit
arbitrary locations, delivering a package might require using a truck to move it to an
airport, using an airplane to move it to another city and then once again using & truck
to get the package to its final destination.

We assume the following types of objects:
o thing, with subtypes package and vehicle
o vehicle, with subtypes truck and airplane
o location, with subtype airport

A model of this domain may include the following operators. For Simple Task Network
planning, these operators correspond directly to primitive tasks.

o load-truck{package, truck, location) loads a package into a truck, given that they are
both at the same location. The truck can hold an arbitrary number of packages.

» unload-truck(package, truck, location} unloads a package from a truck in the current
location.

o load-plane(package, airplane, location) loads a package into a plane, given that they
are both at the same location. The plane can hold an arbitrary number of packages.

o unload-plane(package, airplane, location) unloads a package from an airplane in the
currens location.

e drive-truck(truck, location, location) drives a truck between locations in the same
city.

o fly-plane(plane, airport, airport) flies a plane between two alrports in different cities.
We assume the following predicates are available:

e at(thingloc) — the package or vehicle thing is at the location loc. Note that a
package “at” a certain location cannot be “in” a vehicle in the same state.

o in(x,vehicle) - the package x is in the given vehicle.

» same-city(locl,loc2} ~ the given locations are in the same city. Note that a location
must be in the same location as itself.

We assume a typed domain model where each operator parameter and predicate param-
eter is given a specific type and cannot take on values outside that type. For example, if
t; is & truck, an expression such as at(ty, 1) is not merely false but incorrect. Neverthe-
less, we provide the following type predicates that may be useful in some situations:
thing(x), package(x), vehicle(x), truck(x), airplane(x), location(x) and airport(x).

‘We can then define the operators more formally as shown on the following page:

[

»

foad-truck(package pkg, truck trk, location loc)
Precondition: at(pkg, loc) A at(trk, loc)
Effects: —at{pkg, loc), in(pkg, trk)

load-airplane(package pkg, airplane plane, location loc)
Precondition: at(pkg, loc) A at(plane, loc)
Effects: —at{pkg, loc), in(pkg, plane)

unload-truck(package pkg, truck trk, location loc)
Precondition: in(pkg, trk) A at(trk, loc)
Effects: —in{pkg, trk), at(pkg, loc)

unload-airplane(package pkg, airplane plane, location foc)
Precondition: in(pkg, plane} A at(plane, loc)
Effects: —in{pkg, plane), at{pkg, loc)

drive-truck(truck trk, location from, location to)
Precondition: at(trk, from) A same-city{from, to)
Effects: ~at(trk, from), at(trk, to)

fly-airplane(airplane plane, airport from, airport to)
Precondition: at(plane, from)
Effects: —at{plane, from), at(plane, to)

